Secondary Structure Estimation of Proteins Using the Amide III Region of Fourier Transform Infrared Spectroscopy: Application to Analyze Calcium-Binding-Induced Structural Changes in Calsequestrin

1994 ◽  
Vol 48 (11) ◽  
pp. 1432-1441 ◽  
Author(s):  
Fen-Ni Fu ◽  
Daniel B. Deoliveira ◽  
William R. Trumble ◽  
Hemanta K. Sarkar ◽  
Bal Ram Singh

A Fourier transform infrared spectroscopic method has been developed to analyze protein secondary structure by employing the amide III spectral region (1350–1200 cm−1)· Benefits of using the amide III region have been shown to be substantial. The interference from the water vibration (∼1640 cm−1) in the amide I region can be avoided when one is using the amide III band; furthermore, the amide III region also presents a more characterized spectral feature which provides easily resolved and better defined bands for quantitative analysis. Estimates of secondary structure are accomplished with the use of Fourier self-deconvolution, second derivatization, and curve-fitting on original protein spectra. The secondary structure frequency windows (α-helix, 1328–1289 cm−1; unordered, 1288–1256 cm−1; and β-sheets, 1255–1224 cm−1) have been obtained, and estimates of secondary structural contents are consistent with X-ray crystallography data for model proteins and parallel results obtained with the use of the amide I region. We have further applied the analysis to the structural change of calsequestrin upon Ca2+ binding. Treatment of calsequestrin with 1 mM Ca2+ results in the formation of crystalline aggregates accompanied by a 10% increase in α-helical structure, which is consistent with previous results obtained by Raman spectroscopy. Thus the amide III region of protein IR spectra appears to be a valuable tool in estimating individual protein secondary structural contents.

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7650
Author(s):  
Tatijana Markoska ◽  
Davor Daniloski ◽  
Todor Vasiljevic ◽  
Thom Huppertz

This study investigated structural changes in β-casein as a function of temperature (4 and 20 °C) and pH (5.9 and 7.0). For this purpose, nuclear magnetic resonance (NMR) and Fourier-transform infrared (FTIR) spectroscopy were used, in conjunction with chemometric analysis. Both temperature and pH had strongly affected the secondary structure of β-casein, with most affected regions involving random coils and α-helical structures. The α-helical structures showed great pH sensitivity by decreasing at 20 °C and diminishing completely at 4 °C when pH was increased from 5.9 to 7.0. The decrease in α-helix was likely related to the greater presence of random coils at pH 7.0, which was not observed at pH 5.9 at either temperature. The changes in secondary structure components were linked to decreased hydrophobic interactions at lower temperature and increasing pH. The most prominent change of the α-helix took place when the pH was adjusted to 7.0 and the temperature set at 4 °C, which confirms the disruption of the hydrogen bonds and weakening of hydrophobic interactions in the system. The findings can assist in establishing the structural behaviour of the β-casein under conditions that apply as important for solubility and production of β-casein.


2017 ◽  
Vol 62 (No. 3) ◽  
pp. 89-97
Author(s):  
D. Liu ◽  
Y. Li ◽  
G. Zhang ◽  
P. Zhang ◽  
P. Wu ◽  
...  

The objective of this study was to investigate the relationship between the protein secondary structure and the protein rumen degradation kinetics and the protein fractions of mixed feedstuffs of soybean meal with distillers dried grains with solubles (DDGS) at five mixed ratios (DDGS to soybean meal: 100 : 0, 70 : 30, 50 : 50, 30 : 70, 0 : 100). The Fourier transform infrared (FTIR) as a novel and cheap approach was used to detect the protein secondary structure, and the in situ nylon bag method was used to measure degradation kinetics of protein. Protein fractions were classified based on the Cornell net carbohydrate protein system. The results showed that (1) with the increasing soybean meal rate, the ruminal degraded protein and fractions of PB1 and PB2 were changed, (2) a higher α-helix to β-sheet ratio could result in a higher ruminally degraded protein, lower PB3 and PC, and higher PB1 and PB2 fractions in the feedstuff. So, mixing processing changed the feedstuff protein molecular structure spectral feature, which could influence the rumen degradation kinetics and protein fractions. It was inferred that protein degradation rate in mixed feedstuff can be measured by FTIR.


1991 ◽  
Vol 44 (11) ◽  
pp. 1523 ◽  
Author(s):  
BH Stuart ◽  
EF Mcfarlane

Fourier transform infrared ( F.t.i.r .) spectroscopy has been used to investigate the secondary structure of bovine P2 protein in deuterium oxide (D2O) solution. The amide 1 region of the spectrum was analysed quantitatively by means of resolution enhancement and band-fitting procedures. The protein was found to consist mainly of β-structure (61%), with a small amount of α-helix (11%). A reason for the existence of an unusually intense low-frequency band assigned to β-structure is discussed. The F.t.i.r . results are compared with those from an X-ray crystallographic study and from circular dichroism and explanations are offered for discrepancies between the results from the different methods.


Sign in / Sign up

Export Citation Format

Share Document