scholarly journals Prenatal Diagnosis and Molecular Cytogenetic Characterization of an Unusual Complex Structural Rearrangement in a Pregnancy Following Intracytoplasmic Sperm Injection (ICSI)

2005 ◽  
Vol 53 (3) ◽  
pp. 351-354 ◽  
Author(s):  
M. Trimborn ◽  
T. Liehr ◽  
B. Belitz ◽  
L. Pfeiffer ◽  
R. Varon ◽  
...  

We report on a balanced complex chromosomal aberration detected in a fetus after amniocentesis. The pregnancy was achieved after intracytoplasmic sperm injection. GTG-banding revealed a complex structurally rearranged karyotype with a translocation between chromosomes 5 and 15 and an additional paracentric inversion in the der(15) between bands 5q11.2 and 5q15. Ag-NOR staining showed an interstitial active nuclear organizer region in the der(15). Molecular cytogenetic analyses using whole-chromosome–painting probes, comparative genomic hybridization, and multicolor banding did not point to further structural aberrations or imbalances. Therefore, a complex rearrangement with three breakpoints has occurred, and the karyotype can be described as 46,XX,der(5)t(5;15)(q11.2;p12),der(15)t(5;15)(q11.2;p12)inv(5)(q11.2q15).

2000 ◽  
Vol 93 (3) ◽  
pp. 437-448 ◽  
Author(s):  
Jane Bayani ◽  
Maria Zielenska ◽  
Paula Marrano ◽  
Yim Kwan Ng ◽  
Michael D. Taylor ◽  
...  

Object. Medulloblastomas and related primitive neuroectodermal tumors (PNETs) of the central nervous system are malignant, invasive embryonal tumors with predominantly neuronal differentiation that comprise 20% of pediatric brain tumors. Cytogenetic analysis has shown that alterations in chromosome 17, particularly the loss of 17p and the formation of isochromosome 17q, as well as the gain of chromosome 7 are the most common changes among this group of tumors. Comparative genomic hybridization (CGH) studies have largely confirmed these cytogenetic findings and have also identified novel regions of gain, loss, and amplification. The advent of more sophisticated multicolored fluorescence in situ hybridization (FISH) procedures such as spectral karyotyping (SKY) now permits complete recognition of all aberrations including extremely complex rearrangements. The authors report a retrospective analysis of 19 medulloblastoma and five PNET cases studied using combinations of classic banding analysis, FISH, CGH, and SKY to examine comprehensively the chromosomal aberrations present in this tumor group and to attempt to identify common structural rearrangement(s).Methods. The CGH data demonstrate gains of chromosomes 17q and 7 in 60% of the tumors studied, which confirms data reported in the current literature. However, the authors have also combined the results of all three molecular cytogenetic assays (Giemsa banding, CGH, and SKY) to reveal the frequency of chromosomal rearrangement (gained, lost, or involved in structural rearrangement).Conclusions. The combined results indicate that chromosomes 7 and 17 are the most frequently rearranged chromosomes (10.1% and 8.9%, respectively, in all rearrangements detected). Furthermore, chromosomes 3 (7.8%), 14 (7%), 10 (6.7%), and 22 (6.5%) were also found to be frequently rearranged, followed by chromosomes 6 (6.5%), 13 (6.2%), and 18 (6.2%). Eight (33%) of 24 tumors exhibited high-level gains or gene amplification. Amplification of MYCN was identified in four tumors, whereas amplification of MYCC was identified in one tumor. One tumor exhibited a high-level gain of chromosome 9p. Additionally, desmoplastic medulloblastomas and large-cell medulloblastomas exhibited higher karyotype heterogeneity, amplification, and aneusomy than classic medulloblastomas.


2021 ◽  
Vol 12 ◽  
Author(s):  
Renata Luiza Rosa de Moraes ◽  
Francisco de Menezes Cavalcante Sassi ◽  
Luiz Antonio Carlos Bertollo ◽  
Manoela Maria Ferreira Marinho ◽  
Patrik Ferreira Viana ◽  
...  

Miniature fishes have always been a challenge for cytogenetic studies due to the difficulty in obtaining chromosomal preparations, making them virtually unexplored. An example of this scenario relies on members of the family Lebiasinidae which include miniature to medium-sized, poorly known species, until very recently. The present study is part of undergoing major cytogenetic advances seeking to elucidate the evolutionary history of lebiasinids. Aiming to examine the karyotype diversification more deeply in Pyrrhulina, here we combined classical and molecular cytogenetic analyses, including Giemsa staining, C-banding, repetitive DNA mapping, comparative genomic hybridization (CGH), and whole chromosome painting (WCP) to perform the first analyses in five Pyrrhulina species (Pyrrhulina aff. marilynae, Pyrrhulina sp., P. obermulleri, P. marilynae and Pyrrhulina cf. laeta). The diploid number (2n) ranged from 40 to 42 chromosomes among all analyzed species, but P. marilynae is strikingly differentiated by having 2n = 32 chromosomes and a karyotype composed of large meta/submetacentric chromosomes, whose plesiomorphic status is discussed. The distribution of microsatellites does not markedly differ among species, but the number and position of the rDNA sites underwent significant changes among them. Interspecific comparative genome hybridization (CGH) found a moderate divergence in the repetitive DNA content among the species’ genomes. Noteworthy, the WCP reinforced our previous hypothesis on the origin of the X1X2Y multiple sex chromosome system in P. semifasciata. In summary, our data suggest that the karyotype differentiation in Pyrrhulina has been driven by major structural rearrangements, accompanied by high dynamics of repetitive DNAs.


2021 ◽  
pp. 1-11
Author(s):  
Katja Piaszinski ◽  
Martina Rincic ◽  
Thomas Liehr ◽  
Shaymaa Azawi

Melanoma is considered to be one of the most aggressive human tumors. Thus, early molecular diagnosis with risk factor stratification could be an efficacious strategy to increase the survival rates in affected patients. Murine cell lines B16-F1, B16-4A5, and S91 clone M3 are the ones most commonly applied in melanoma research. However, genetic peculiarities of these 3 cell lines have not been studied in detail before. Here, we closed this gap by molecular cytogenetic and array-comparative genomic hybridization studies and the translation of the characterized imbalances into the human genome. This study revealed severely rearranged karyotypes with in parts similar imbalances for all 3 cell lines. Interestingly, they involve genes known to play major roles in human melanoma. These are specifically the oncogenes and tumor suppressor genes, being associated with aggressive forms of melanoma. B16-F1, B16-4A5, and S91 clone M3 revealed aberrations which were similarly observed in human eye and skin but not in human uveal melanoma. Thus, they can be considered as model systems for advanced eye and skin melanoma.


2019 ◽  
Vol 13 (3) ◽  
pp. 211-230 ◽  
Author(s):  
Yan-Mei Tang ◽  
Liang Xiao ◽  
Yasir Iqbal ◽  
Jian-Feng Liao ◽  
Long-Qian Xiao ◽  
...  

Chromosomes of four Miscanthus (Andersson, 1855) species including M. sinensis (Andersson, 1855), M. floridulus (Schumann & Lauterb, 1901), M. sacchariflorus (Hackel, 1882) and M. lutarioriparius (Chen & Renvoize, 2005) were analyzed using sequentially combined PI and DAPI (CPD) staining and fluorescence in situ hybridization (FISH) with 45S rDNA probe. To elucidate the phylogenetic relationship among the four Miscanthus species, the homology of repetitive sequences among the four species was analyzed by comparative genomic in situ hybridization (cGISH). Subsequently four Miscanthus species were clustered based on the internal transcribed spacer (ITS) of 45S rDNA. Molecular cytogenetic karyotypes of the four Miscanthus species were established for the first time using chromosome measurements, fluorochrome bands and 45S rDNA FISH signals, which will provide a cytogenetic tool for the identification of these four species. All the four have the karyotype formula of Miscanthus species, which is 2n = 2x = 38 = 34m(2SAT) + 4sm, and one pair of 45S rDNA sites. The latter were shown as strong red bands by CPD staining. A non-rDNA CPD band emerged in M. floridulus and some blue DAPI bands appeared in M. sinensis and M. floridulus. The hybridization signals of M. floridulus genomic DNA to the chromosomes of M. sinensis and M. lutarioriparius genomic DNA to the chromosomes of M. sacchariflorus were stronger and more evenly distributed than other combinations. Molecular phylogenetic trees showed that M. sinensis and M. floridulus were closest relatives, and M. sacchariflorus and M. lutarioriparius were also closely related. These findings were consistent with the phylogenetic relationships inferred from the cGISH patterns.


Sign in / Sign up

Export Citation Format

Share Document