scholarly journals Correction: Transcriptome Analysis of Acetyl-Homoserine Lactone-Based Quorum Sensing Regulation in Yersinia pestis

Author(s):  
Christopher N. LaRock ◽  
Jing Yu ◽  
Alexander R. Horswill ◽  
Matthew R. Parsek ◽  
F. Chris Minion
PLoS ONE ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. e62337 ◽  
Author(s):  
Christopher N. LaRock ◽  
Jing Yu ◽  
Alexander R. Horswill ◽  
Matthew R. Parsek ◽  
F. Chris Minion

2003 ◽  
Vol 185 (7) ◽  
pp. 2066-2079 ◽  
Author(s):  
Martin Schuster ◽  
C. Phoebe Lostroh ◽  
Tomoo Ogi ◽  
E. P. Greenberg

ABSTRACT There are two interrelated acyl-homoserine lactone quorum-sensing-signaling systems in Pseudomonas aeruginosa. These systems, the LasR-LasI system and the RhlR-RhlI system, are global regulators of gene expression. We performed a transcriptome analysis to identify quorum-sensing-controlled genes and to better understand quorum-sensing control of P. aeruginosa gene expression. We compared gene expression in a LasI-RhlI signal mutant grown with added signals to gene expression without added signals, and we compared a LasR-RhlR signal receptor mutant to its parent. In all, we identified 315 quorum-induced and 38 quorum-repressed genes, representing about 6% of the P. aeruginosa genome. The quorum-repressed genes were activated in the stationary phase in quorum-sensing mutants but were not activated in the parent strain. The analysis of quorum-induced genes suggests that the signal specificities are on a continuum and that the timing of gene expression is on a continuum (some genes are induced early in growth, most genes are induced at the transition from the logarithmic phase to the stationary phase, and some genes are induced during the stationary phase). In general, timing was not related to signal concentration. We suggest that the level of the signal receptor, LasR, is a critical trigger for quorum-activated gene expression. Acyl-homoserine lactone quorum sensing appears to be a system that allows ordered expression of hundreds of genes during P. aeruginosa growth in culture.


2021 ◽  
Vol 5 (7) ◽  
pp. 275-292
Author(s):  
Ting Ding ◽  
◽  
Yong Li

Pseudomonas fluorescens is an important psychrotrophic food-spoilage bacterium. Quorum sensing (QS) enables bacteria to control various physiological processes. Hence, targeting bacterial QS would be a novel method to improve food quality. In this study, P. fluorescens P07 was treated with vanillin, which showed strong QS inhibitory activity, and its resultant effects on swarming motility, biofilm formation, and extracellular polymeric substance (EPS) secretion were measured. The mechanisms underlying the inhibitory effects were then explored by transcriptomic analysis. The results showed that vanillin had inhibitory effects on swarming motility, biofilm formation, N-acyl-L-homoserine Lactone (AHLs) and EPS secretion of P. fluorescens P07. The result of transcriptionomic tests indicated that the decrease in bacterial biofilm formation was probably due to the influence of vanillin on mobility, adhesion, chemotaxis, EPS secretion, and QS system of the bacteria. Keywords: Pseudomonas fluorescens, quorum sensing, biofilm formation, transcriptome analysis, swarming motility


2009 ◽  
Vol 46 (5) ◽  
pp. 283-287 ◽  
Author(s):  
H. Carl Gelhaus ◽  
David A. Rozak ◽  
William C. Nierman ◽  
Dan Chen ◽  
John J. Varga, Mojgan Zadeh ◽  
...  

2007 ◽  
Vol 189 (22) ◽  
pp. 8387-8391 ◽  
Author(s):  
Luis Caetano M. Antunes ◽  
Amy L. Schaefer ◽  
Rosana B. R. Ferreira ◽  
Nan Qin ◽  
Ann M. Stevens ◽  
...  

ABSTRACT The Vibrio fischeri quorum-sensing signal N-3-oxohexanoyl-l-homoserine lactone (3OC6-HSL) activates expression of the seven-gene luminescence operon. We used microarrays to unveil 18 additional 3OC6-HSL-controlled genes, 3 of which had been identified by other means previously. We show most of these genes are regulated by the 3OC6-HSL-responsive transcriptional regulator LuxR directly. This demonstrates that V. fischeri quorum sensing regulates a substantial number of genes other than those involved in light production.


2021 ◽  
Vol 771 ◽  
pp. 145437
Author(s):  
Yan-Hua Zeng ◽  
Ke-Ke Cheng ◽  
Zhong-Hua Cai ◽  
Jian-Ming Zhu ◽  
Xiao-Peng Du ◽  
...  

Microbiology ◽  
2009 ◽  
Vol 155 (3) ◽  
pp. 712-723 ◽  
Author(s):  
Valérie Dekimpe ◽  
Eric Déziel

Pseudomonas aeruginosa uses the two major quorum-sensing (QS) regulatory systems las and rhl to modulate the expression of many of its virulence factors. The las system is considered to stand at the top of the QS hierarchy. However, some virulence factors such as pyocyanin have been reported to still be produced in lasR mutants under certain conditions. Interestingly, such mutants arise spontaneously under various conditions, including in the airways of cystic fibrosis patients. Using transcriptional lacZ reporters, LC/MS quantification and phenotypic assays, we have investigated the regulation of QS-controlled factors by the las system. Our results show that activity of the rhl system is only delayed in a lasR mutant, thus allowing the expression of multiple virulence determinants such as pyocyanin, rhamnolipids and C4-homoserine lactone (HSL) during the late stationary phase. Moreover, at this stage, RhlR is able to overcome the absence of the las system by activating specific LasR-controlled functions, including production of 3-oxo-C12-HSL and Pseudomonas quinolone signal (PQS). P. aeruginosa is thus able to circumvent the deficiency of one of its QS systems by allowing the other to take over. This work demonstrates that the QS hierarchy is more complex than the model simply presenting the las system above the rhl system.


Sign in / Sign up

Export Citation Format

Share Document