scholarly journals Revisiting the quorum-sensing hierarchy in Pseudomonas aeruginosa: the transcriptional regulator RhlR regulates LasR-specific factors

Microbiology ◽  
2009 ◽  
Vol 155 (3) ◽  
pp. 712-723 ◽  
Author(s):  
Valérie Dekimpe ◽  
Eric Déziel

Pseudomonas aeruginosa uses the two major quorum-sensing (QS) regulatory systems las and rhl to modulate the expression of many of its virulence factors. The las system is considered to stand at the top of the QS hierarchy. However, some virulence factors such as pyocyanin have been reported to still be produced in lasR mutants under certain conditions. Interestingly, such mutants arise spontaneously under various conditions, including in the airways of cystic fibrosis patients. Using transcriptional lacZ reporters, LC/MS quantification and phenotypic assays, we have investigated the regulation of QS-controlled factors by the las system. Our results show that activity of the rhl system is only delayed in a lasR mutant, thus allowing the expression of multiple virulence determinants such as pyocyanin, rhamnolipids and C4-homoserine lactone (HSL) during the late stationary phase. Moreover, at this stage, RhlR is able to overcome the absence of the las system by activating specific LasR-controlled functions, including production of 3-oxo-C12-HSL and Pseudomonas quinolone signal (PQS). P. aeruginosa is thus able to circumvent the deficiency of one of its QS systems by allowing the other to take over. This work demonstrates that the QS hierarchy is more complex than the model simply presenting the las system above the rhl system.

2000 ◽  
Vol 182 (22) ◽  
pp. 6401-6411 ◽  
Author(s):  
Klaus Winzer ◽  
Colin Falconer ◽  
Nachman C. Garber ◽  
Stephen P. Diggle ◽  
Miguel Camara ◽  
...  

ABSTRACT In Pseudomonas aeruginosa, many exoproduct virulence determinants are regulated via a hierarchical quorum-sensing cascade involving the transcriptional regulators LasR and RhlR and their cognate activators,N-(3-oxododecanoyl)-l-homoserine lactone (3O-C12-HSL) and N-butanoyl-l-homoserine lactone (C4-HSL). In this paper, we demonstrate that the cytotoxic lectins PA-IL and PA-IIL are regulated via quorum sensing. Using immunoblot analysis, the production of both lectins was found to be directly dependent on the rhl locus while, in alasR mutant, the onset of lectin synthesis was delayed but not abolished. The PA-IL structural gene, lecA, was cloned and sequenced. Transcript analysis indicated a monocistronic organization with a transcriptional start site 70 bp upstream of thelecA translational start codon. A lux box-type element together with RpoS (ςS) consensus sequences was identified upstream of the putative promoter region. InEscherichia coli, expression of alecA::lux reporter fusion was activated by RhlR/C4-HSL, but not by LasR/3O-C12-HSL, confirming direct regulation by RhlR/C4-HSL. Similarly, in P. aeruginosaPAO1, the expression of a chromosomallecA::lux fusion was enhanced but not advanced by the addition of exogenous C4-HSL but not 3O-C12-HSL. Furthermore, mutation of rpoS abolished lectin synthesis inP. aeruginosa, demonstrating that both RpoS and RhlR/C4-HSL are required. Although the C4-HSL-dependent expression of the lecA::lux reporter in E. coli could be inhibited by the presence of 3O-C12-HSL, this did not occur in P. aeruginosa. This suggests that, in the homologous genetic background, 3O-C12-HSL does not function as a posttranslational regulator of the RhlR/C4-HSL-dependent activation oflecA expression.


2007 ◽  
Vol 73 (10) ◽  
pp. 3183-3188 ◽  
Author(s):  
Takenori Ishida ◽  
Tsukasa Ikeda ◽  
Noboru Takiguchi ◽  
Akio Kuroda ◽  
Hisao Ohtake ◽  
...  

ABSTRACT N-Octanoyl cyclopentylamide (C8-CPA) was found to moderately inhibit quorum sensing in Pseudomonas aeruginosa PAO1. To obtain more powerful inhibitors, a series of structural analogs of C8-CPA were synthesized and examined for their ability to inhibit quorum sensing in P. aeruginosa PAO1. The lasB-lacZ and rhlA-lacZ reporter assays revealed that the chain length and the ring structure were critical for C8-CPA analogs to inhibit quorum sensing. N-Decanoyl cyclopentylamide (C10-CPA) was found to be the strongest inhibitor, and its concentrations required for half-maximal inhibition for lasB-lacZ and rhlA-lacZ expression were 80 and 90 μM, respectively. C10-CPA also inhibited production of virulence factors, including elastase, pyocyanin, and rhamnolipid, and biofilm formation without affecting growth of P. aeruginosa PAO1. C10-CPA inhibited induction of both lasI-lacZ by N-(3-oxododecanoyl)-l-homoserine lactone (PAI1) and rhlA-lacZ by N-butanoyl-l-homoserine lactone (PAI2) in the lasI rhlI mutant of P. aeruginosa PAO1, indicating that C10-CPA interferes with the las and rhl quorum-sensing systems via inhibiting interaction between their response regulators (LasR and RhlR) and autoinducers.


Microbiology ◽  
2011 ◽  
Vol 157 (7) ◽  
pp. 2120-2132 ◽  
Author(s):  
Olivier M. Vandeputte ◽  
Martin Kiendrebeogo ◽  
Tsiry Rasamiravaka ◽  
Caroline Stévigny ◽  
Pierre Duez ◽  
...  

Preliminary screening of the Malagasy plant Combretum albiflorum for compounds attenuating the production of quorum sensing (QS)-controlled virulence factors in bacteria led to the identification of active fractions containing flavonoids. In the present study, several flavonoids belonging to the flavone, flavanone, flavonol and chalcone structural groups were screened for their capacity to reduce the production of QS-controlled factors in the opportunistic pathogen Pseudomonas aeruginosa (strain PAO1). Flavanones (i.e. naringenin, eriodictyol and taxifolin) significantly reduced the production of pyocyanin and elastase in P. aeruginosa without affecting bacterial growth. Consistently, naringenin and taxifolin reduced the expression of several QS-controlled genes (i.e. lasI, lasR, rhlI, rhlR, lasA, lasB, phzA1 and rhlA) in P. aeruginosa PAO1. Naringenin also dramatically reduced the production of the acylhomoserine lactones N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL) and N-butanoyl-l-homoserine lactone (C4-HSL), which is driven by the lasI and rhlI gene products, respectively. In addition, using mutant strains deficient for autoinduction (ΔlasI and ΔrhlI) and LasR- and RhlR-based biosensors, it was shown that QS inhibition by naringenin not only is the consequence of a reduced production of autoinduction compounds but also results from a defect in the proper functioning of the RlhR–C4-HSL complex. Widely distributed in the plant kingdom, flavonoids are known for their numerous and determinant roles in plant physiology, plant development and in the success of plant–rhizobia interactions, but, as shown here, some of them also have a role as inhibitors of the virulence of pathogenic bacteria by interfering with QS mechanisms.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
O. Lidor ◽  
A. Al-Quntar ◽  
E. C. Pesci ◽  
D. Steinberg

Abstract Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen responsible for many human infections. LasI is an acyl-homoserine lactone synthase that produces a quorum-sensing (QS) signal that positively regulates numerous P. aeruginosa virulence determinants. The inhibition of the LasI protein is therefore an attractive drug target. In this study, a novel in silico to in vitro complementation was applied to screen thiazolidinedione-type compounds for their ability to inhibit biofilm formation at concentrations not affecting bacterial growth. The compound (z)-5-octylidenethiazolidine-2, 4-dione (TZD-C8) was a strong inhibitor of biofilm formation and chosen for further study. Structural exploration of in silico docking predicted that the compound had high affinity for the LasI activity pocket. The TZD-C8 compound was also predicted to create hydrogen bonds with residues Arg30 and Ile107. Site-directed mutagenesis (SDM) of these two sites demonstrated that TZD-C8 inhibition was abolished in the lasI double mutant PAO-R30D, I107S. In addition, in vitro swarming motility and quorum sensing signal production were affected by TZD-C 8, confirming this compound alters the cell to cell signalling circuitry. Overall, this novel inhibitor of P. aeruginosa quorum sensing shows great promise and validates our mechanistic approach to discovering inhibitors of LuxI-type acyl-homoserine lactone synthases.


2003 ◽  
Vol 71 (10) ◽  
pp. 5785-5793 ◽  
Author(s):  
Kazuhiro Tateda ◽  
Yoshikazu Ishii ◽  
Manabu Horikawa ◽  
Tetsuya Matsumoto ◽  
Shinichi Miyairi ◽  
...  

ABSTRACT Quorum-sensing systems are critical regulators of the expression of virulence factors of various organisms, including Pseudomonas aeruginosa. Las and Rhl are two major quorum-sensing components, and they are regulated by their corresponding autoinducers, N-3-oxododecanoyl homoserine lactone (3-oxo-C12-HSL) and N-butyryl-l-homoserine lactone (C4-HSL). Recent progress has demonstrated the potential of quorum-sensing molecules, especially 3-oxo-C12-HSL, for modulation of the host immune system. Here we show the specific ability of 3-oxo-C12-HSL to induce apoptosis in certain types of cells. When bone marrow-derived macrophages were incubated with synthetic 3-oxo-C12-HSL, but when they were incubated not C4-HSL, significant loss of viability was observed in a concentration (12 to 50 μM)- and incubation time (1 to 24 h)-dependent manner. The cytotoxic activity of 3-oxo-C12-HSL was also observed in neutrophils and monocytic cell lines U-937 and P388D1 but not in epithelial cell lines CCL-185 and HEp-2. Cells treated with 3-oxo-C12-HSL revealed morphological alterations indicative of apoptosis. Acceleration of apoptosis in 3-oxo-C12-HSL-treated cells was confirmed by multiple criteria (caspases 3 and 8, histone-associated DNA fragments, phosphatidylserine expression). Structure-activity correlation experiments demonstrated that the fine structure of 3-oxo-C12-HSL, the HSL backbone, and side chain length are required for maximal activity. These data suggest that Pseudomonas 3-oxo-C12-HSL specifically promotes induction of apoptosis, which may be associated with 3-oxo-C12-HSL-induced cytotoxicity in macrophages and neutrophils. Our data suggest that the quorum-sensing molecule 3-oxo-C12-HSL has critical roles in the pathogenesis of P. aeruginosa infection, not only in the induction of bacterial virulence factors but also in the modulation of host responses.


mSystems ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Marie-Christine Groleau ◽  
Thays de Oliveira Pereira ◽  
Valérie Dekimpe ◽  
Eric Déziel

ABSTRACT The bacterium Pseudomonas aeruginosa has emerged as a central threat in health care settings and can cause a large variety of infections. It expresses an arsenal of virulence factors and a diversity of survival functions, many of which are finely and tightly regulated by an intricate circuitry of three quorum sensing (QS) systems. The las system is considered at the top of the QS hierarchy and activates the rhl and pqs systems. It is composed of the LasR transcriptional regulator and the LasI autoinducer synthase, which produces 3-oxo-C12-homoserine lactone (3-oxo-C12-HSL), the ligand of LasR. RhlR is the transcriptional regulator for the rhl system and is associated with RhlI, which produces its cognate autoinducer C4-HSL. The third QS system is composed of the pqsABCDE operon and the MvfR (PqsR) regulator. PqsABCD synthetize 4-hydroxy-2-alkylquinolines (HAQs), which include ligands activating MvfR. PqsE is not required for HAQ production and instead is associated with the expression of genes controlled by the rhl system. While RhlR is often considered the main regulator of rhlI, we confirmed that LasR is in fact the principal regulator of C4-HSL production and that RhlR regulates rhlI and production of C4-HSL essentially only in the absence of LasR by using liquid chromatography-mass spectrometry quantifications and gene expression reporters. Investigating the expression of RhlR targets also clarified that activation of RhlR-dependent QS relies on PqsE, especially when LasR is not functional. This work positions RhlR as the key QS regulator and points to PqsE as an essential effector for full activation of this regulation. IMPORTANCE Pseudomonas aeruginosa is a versatile bacterium found in various environments. It can cause severe infections in immunocompromised patients and naturally resists many antibiotics. The World Health Organization listed it among the top priority pathogens for research and development of new antimicrobial compounds. Quorum sensing (QS) is a cell-cell communication mechanism, which is important for P. aeruginosa adaptation and pathogenesis. Here, we validate the central role of the PqsE protein in QS particularly by its impact on the regulator RhlR. This study challenges the traditional dogmas of QS regulation in P. aeruginosa and ties loose ends in our understanding of the traditional QS circuit by confirming RhlR to be the main QS regulator in P. aeruginosa. PqsE could represent an ideal target for the development of new control methods against the virulence of P. aeruginosa. This is especially important when considering that LasR-defective mutants frequently arise, e.g., in chronic infections.


2006 ◽  
Vol 188 (24) ◽  
pp. 8601-8606 ◽  
Author(s):  
Vanessa Jensen ◽  
Dagmar Löns ◽  
Caroline Zaoui ◽  
Florian Bredenbruch ◽  
Andree Meissner ◽  
...  

ABSTRACT The expression of virulence determinants in Pseudomonas aeruginosa is coordinately regulated in response to both the social environment—commonly referred to as quorum sensing—and to environmental cues. In this study we have dissected the various independent regulation levels for pyocyanin production, which is influenced by the homoserine lactone- and Pseudomonas quinolone signal (PQS)-mediated quorum-sensing systems as well as by iron and phosphate availability. We demonstrate that the phosphate regulon is involved in the transcriptional activation of rhlR and the augmentation of PQS and pyocyanin production under phosphate limitation. However, we also observed an enhancement of rhlR transcription under low-iron medium conditions and after the addition of PQS that was independent of the phosphate regulon. These results highlight the complexity of secondary metabolite production in P. aeruginosa via environmental cues and the quorum-sensing system.


1998 ◽  
Vol 180 (20) ◽  
pp. 5443-5447 ◽  
Author(s):  
Kelly Evans ◽  
Luciano Passador ◽  
Ramakrishnan Srikumar ◽  
Eric Tsang ◽  
Jonathon Nezezon ◽  
...  

ABSTRACT Pseudomonas aeruginosa nalB mutants which hyperexpress the MexAB-OprM multidrug efflux system produce reduced levels of several extracellular virulence factors known to be regulated by quorum sensing. Such mutants also produce less acylated homoserine lactone autoinducer PAI-1, consistent with an observed reduction inlasI expression. These data suggest that PAI-1 is a substrate for MexAB-OprM, and its resulting exclusion from cells hyperexpressing MexAB-OprM limits PAI-1-dependent activation of lasI and the virulence genes.


2012 ◽  
Vol 57 (1) ◽  
pp. 569-578 ◽  
Author(s):  
Moayad Alhariri ◽  
Abdelwahab Omri

ABSTRACTWe sought to investigate alterations in quorum-sensing signal moleculeN-acyl homoserine lactone secretion and in the release ofPseudomonas aeruginosavirulence factors, as well as thein vivoantimicrobial activity of bismuth-ethanedithiol incorporated into a liposome-loaded tobramycin formulation (LipoBiEDT-TOB) administered to rats chronically infected withP. aeruginosa. The quorum-sensing signal moleculeN-acyl homoserine lactone was monitored by using a biosensor organism.P. aeruginosavirulence factors were assessed spectrophotometrically. An agar beads model of chronicPseudomonaslung infection in rats was used to evaluate the efficacy of the liposomal formulation in the reduction of bacterial count. The levels of active tobramycin in the lungs and the kidneys were evaluated by microbiological assay. LipoBiEDT-TOB was effective in disrupting both quorum-sensing signal moleculesN-3-oxo-dodeccanoylhomoserine lactone andN-butanoylhomoserine lactone, as well as significantly (P< 0.05) reducing lipase, chitinase, and protease production. At 24 h after 3 treatments, the CFU counts in lungs of animals treated with LipoBiEDT-TOB were of 3 log10CFU/lung, comparated to 7.4 and 4.7 log10CFU/lung, respectively, in untreated lungs and in lungs treated with free antibiotic. The antibiotic concentration after the last dose of LipoBiEDT-TOB was 25.1 μg/lung, while no tobramycin was detected in the kidneys. As for the free antibiotic, we found 6.5 μg/kidney but could not detect any tobramycin in the lungs. Taken together, LipoBiEDT-TOB reduced the production of quorum-sensing molecules and virulence factors and could highly improve the management of chronic pulmonary infection in cystic fibrosis patients.


Sign in / Sign up

Export Citation Format

Share Document