scholarly journals The Virtual Cell Animation Collection: Tools for Teaching Molecular and Cellular Biology

PLoS Biology ◽  
2015 ◽  
Vol 13 (4) ◽  
pp. e1002118 ◽  
Author(s):  
Katie M. Reindl ◽  
Alan R. White ◽  
Christina Johnson ◽  
Bradley Vender ◽  
Brian M. Slator ◽  
...  
2018 ◽  
Vol 69 (10) ◽  
pp. 2948-2939 ◽  
Author(s):  
Carmen Moldovan ◽  
Lidia Dobrescu ◽  
Violeta Ristoiu ◽  
Bogdan Firtat ◽  
Silviu Dinulescu ◽  
...  

This article presents experimental measurements performed in order to connect a neuronal cell culture to an exoprosthesis. The experiments focused on the biosignals� acquisition from the cell culture. A special gold-plated glass plate device was realized and several constructive variants were analyzed. A Olympus microscope with fluorescence and photo system was used. The acquisition of bio signals from the neuron culture is realized and described in the paper. The measurements were made in the sterile environment within the laboratory of Institute of Cellular Biology and Pathology. The measurements have been made for the pair of electrodes 1-1 at the edge of the glass plate.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1887
Author(s):  
Inbal Dagan ◽  
Raz Palty

Calcium (Ca2+) signaling plays a dichotomous role in cellular biology, controlling cell survival and proliferation on the one hand and cellular toxicity and cell death on the other. Store-operated Ca2+ entry (SOCE) by CRAC channels represents a major pathway for Ca2+ entry in non-excitable cells. The CRAC channel has two key components, the endoplasmic reticulum Ca2+ sensor stromal interaction molecule (STIM) and the plasma-membrane Ca2+ channel Orai. Physical coupling between STIM and Orai opens the CRAC channel and the resulting Ca2+ flux is regulated by a negative feedback mechanism of slow Ca2+ dependent inactivation (SCDI). The identification of the SOCE-associated regulatory factor (SARAF) and investigations of its role in SCDI have led to new functional and molecular insights into how SOCE is controlled. In this review, we provide an overview of the functional and molecular mechanisms underlying SCDI and discuss how the interaction between SARAF, STIM1, and Orai1 shapes Ca2+ signaling in cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Carmen N. Hernández-Candia ◽  
Sarah Pearce ◽  
Chandra L. Tucker

AbstractDynamic membraneless compartments formed by protein condensates have multifunctional roles in cellular biology. Tools that inducibly trigger condensate formation have been useful for exploring their cellular function, however, there are few tools that provide inducible control over condensate disruption. To address this need we developed DisCo (Disassembly of Condensates), which relies on the use of chemical dimerizers to inducibly recruit a ligand to the condensate-forming protein, triggering condensate dissociation. We demonstrate use of DisCo to disrupt condensates of FUS, associated with amyotrophic lateral sclerosis, and to prevent formation of polyglutamine-containing huntingtin condensates, associated with Huntington’s disease. In addition, we combined DisCo with a tool to induce condensates with light, CRY2olig, achieving bidirectional control of condensate formation and disassembly using orthogonal inputs of light and rapamycin. Our results demonstrate a method to manipulate condensate states that will have broad utility, enabling better understanding of the biological role of condensates in health and disease.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chen Wang ◽  
Michael P. O’Hagan ◽  
Ehud Neumann ◽  
Rachel Nechushtai ◽  
Itamar Willner

AbstractNucleic acid-based constitutional dynamic networks (CDNs) have recently emerged as versatile tools to control a variety of catalytic processes. A key challenge in the application of these systems is achieving intercommunication between different CDNs to mimic the complex interlinked networks found in cellular biology. In particular, the possibility to interface photochemical ‘energy-harvesting’ processes with dark-operating ‘metabolic’ processes, in a similar way to plants, represents an up to now unexplored yet enticing research direction. The present study introduces two CDNs that allow the intercommunication of photocatalytic and dark-operating catalytic functions mediated by environmental components that facilitate the dynamic coupling of the networks. The dynamic feedback-driven intercommunication of the networks is accomplished via information transfer between the two CDNs effected by hairpin fuel strands in the environment of the system, leading to the coupling of the photochemical and dark-operating modules.


Blood ◽  
1994 ◽  
Vol 84 (11) ◽  
pp. 3983-3984 ◽  
Author(s):  
G Pizzolo ◽  
F Vinante ◽  
M Chilosi ◽  
S Romagnani ◽  
G Del Prete

1993 ◽  
Vol 11 (2) ◽  
pp. 121-126 ◽  
Author(s):  
Thomas F. L??scher ◽  
Barry S. Oemar ◽  
Chantal M. Boulanger ◽  
Alfred W. A. Hahn
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document