scholarly journals A functional bacteria-derived restriction modification system in the mitochondrion of a heterotrophic protist

PLoS Biology ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. e3001126
Author(s):  
David S. Milner ◽  
Jeremy G. Wideman ◽  
Courtney W. Stairs ◽  
Cory D. Dunn ◽  
Thomas A. Richards

The overarching trend in mitochondrial genome evolution is functional streamlining coupled with gene loss; therefore, gene acquisition by mitochondria is considered to be exceedingly rare. Selfish elements in the form of self-splicing introns occur in many organellar genomes, but the wider diversity of selfish elements, and how they persist in the DNA of organelles, has not been explored. In the mitochondrial genome of a marine heterotrophic katablepharid protist, we identify a functional type II restriction modification (RM) system originating from a horizontal gene transfer (HGT) event involving bacteria related to flavobacteria. This RM system consists of an HpaII-like endonuclease and a cognate cytosine methyltransferase (CM). We demonstrate that these proteins are functional by heterologous expression in both bacterial and eukaryotic cells. These results suggest that a mitochondrial-encoded RM system can function as a toxin–antitoxin selfish element and that such elements could be co-opted by eukaryotic genomes to drive biased organellar inheritance.

2021 ◽  
Author(s):  
David S. Milner ◽  
Jeremy G. Wideman ◽  
Courtney W. Stairs ◽  
Cory D. Dunn ◽  
Thomas A. Richards

AbstractThe overarching trend in mitochondrial evolution is functional streamlining coupled with gene loss; therefore, gene acquisition by mitochondria is considered to be exceedingly rare. Selfish elements in the form of self-splicing introns occur in many organellar genomes, but the wider diversity of selfish elements, and how they persist in organellar genomes, has not been explored. In the mitochondrial genome of a marine heterotrophic katablepharid protist, we identify a functional type II restriction modification system originating from a horizontal gene transfer event involving bacteria related to flavobacteria. This restriction modification system consists of an HpaII-like endonuclease and a cognate cytosine methyltransferase. We demonstrate that these proteins are functional by heterologous expression in both bacterial and eukaryotic cells. These results suggest that toxin-antitoxin selfish elements, such as restriction modification systems, could be co-opted by eukaryotic genomes to drive uniparental organellar inheritance.


Gene ◽  
1991 ◽  
Vol 97 (1) ◽  
pp. 97-102 ◽  
Author(s):  
Alan W. Hammond ◽  
Gary F. Gerard ◽  
Deb K. Chatterjee

2010 ◽  
Vol 38 (9) ◽  
pp. 3019-3030 ◽  
Author(s):  
Feroz Khan ◽  
Yoshikazu Furuta ◽  
Mikihiko Kawai ◽  
Katarzyna H. Kaminska ◽  
Ken Ishikawa ◽  
...  

2016 ◽  
Vol 4 (6) ◽  
Author(s):  
Alessandra G. de Melo ◽  
Simon J. Labrie ◽  
Jeannot Dumaresq ◽  
Richard J. Roberts ◽  
Denise M. Tremblay ◽  
...  

Brevibacterium linens is one of the main bacteria found in the smear of surface-ripened cheeses. The genome of the industrial strain SMQ-1335 was sequenced using PacBio. It has 4,209,935 bp, a 62.6% G+C content, 3,848 open reading frames, and 61 structural RNAs. A new type I restriction-modification system was identified.


2004 ◽  
Vol 70 (9) ◽  
pp. 5546-5556 ◽  
Author(s):  
Jonathan O'Driscoll ◽  
Frances Glynn ◽  
Oonagh Cahalane ◽  
Mary O'Connell-Motherway ◽  
Gerald F. Fitzgerald ◽  
...  

ABSTRACT A novel restriction-modification system, designated LlaJI, was identified on pNP40, a naturally occurring 65-kb plasmid from Lactococcus lactis. The system comprises four adjacent similarly oriented genes that are predicted to encode two m5C methylases and two restriction endonucleases. The LlaJI system, when cloned into a low-copy-number vector, was shown to confer resistance against representatives of the three most common lactococcal phage species. This phage resistance phenotype was found to be strongly temperature dependent, being most effective at 19°C. A functional analysis confirmed that the predicted methylase-encoding genes, llaJIM1 and llaJIM2, were both required to mediate complete methylation, while the assumed restriction enzymes, specified by llaJIR1 and llaJIR2, were both necessary for the complete restriction phenotype. A Northern blot analysis revealed that the four LlaJI genes are part of a 6-kb operon and that the relative abundance of the LlaJI-specific mRNA in the cells does not appear to contribute to the observed temperature-sensitive profile. This was substantiated by use of a LlaJI promoter-lacZ fusion, which further revealed that the LlaJI operon appears to be subject to transcriptional regulation by an as yet unidentified element(s) encoded by pNP40.


Sign in / Sign up

Export Citation Format

Share Document