scholarly journals Wing structure and neural encoding jointly determine sensing strategies in insect flight

2021 ◽  
Vol 17 (8) ◽  
pp. e1009195
Author(s):  
Alison I. Weber ◽  
Thomas L. Daniel ◽  
Bingni W. Brunton

Animals rely on sensory feedback to generate accurate, reliable movements. In many flying insects, strain-sensitive neurons on the wings provide rapid feedback that is critical for stable flight control. While the impacts of wing structure on aerodynamic performance have been widely studied, the impacts of wing structure on sensing are largely unexplored. In this paper, we show how the structural properties of the wing and encoding by mechanosensory neurons interact to jointly determine optimal sensing strategies and performance. Specifically, we examine how neural sensors can be placed effectively on a flapping wing to detect body rotation about different axes, using a computational wing model with varying flexural stiffness. A small set of mechanosensors, conveying strain information at key locations with a single action potential per wingbeat, enable accurate detection of body rotation. Optimal sensor locations are concentrated at either the wing base or the wing tip, and they transition sharply as a function of both wing stiffness and neural threshold. Moreover, the sensing strategy and performance is robust to both external disturbances and sensor loss. Typically, only five sensors are needed to achieve near-peak accuracy, with a single sensor often providing accuracy well above chance. Our results show that small-amplitude, dynamic signals can be extracted efficiently with spatially and temporally sparse sensors in the context of flight. The demonstrated interaction of wing structure and neural encoding properties points to the importance of understanding each in the context of their joint evolution.

2021 ◽  
Author(s):  
Alison I. Weber ◽  
Thomas L. Daniel ◽  
Bingni W. Brunton

AbstractAnimals rely on sensory feedback to generate accurate, reliable movements. In many flying insects, strain-sensitive neurons on the wings provide rapid feedback that enables stable flight control. While the impacts of wing structure on aerodynamic performance have been widely studied, the impacts of wing structure on sensing remain unexplored. In this paper, we show how the structural properties of the wing and encoding by mechanosensory neurons interact to jointly determine optimal sensing strategies and performance. Specifically, we examine how neural sensors can be placed effectively over a flapping wing to detect body rotation about different axes, using a computational wing model with varying flexural stiffness inspired by the hawkmoth Manduca sexta. A small set of mechanosensors, conveying strain information at key locations with a single action potential per wingbeat, permit accurate detection of body rotation. Optimal sensor locations are concentrated at either the wing base or the wing tip, and they transition sharply as a function of both wing stiffness and neural threshold. Moreover, the sensing strategy and performance is robust to both external disturbances and sensor loss. Typically, only five sensors are needed to achieve near-peak accuracy, with a single sensor often providing accuracy well above chance. Our results show that small-amplitude, dynamic signals can be extracted efficiently with spatially and temporally sparse sensors in the context of flight. The demonstrated interaction of wing structure and neural encoding properties points to the importance of their joint evolution.


2019 ◽  
Vol 16 (150) ◽  
pp. 20180618 ◽  
Author(s):  
Andrew M. Mountcastle ◽  
E. Farrell Helbling ◽  
Robert J. Wood

Some flying insects frequently collide their wingtips with obstacles, and the next generation of insect-inspired micro air vehicles will inevitably face similar wing collision risks when they are deployed in real-world environments. Wasp wings feature a flexible resilin joint called a ‘costal break’ that allows the wingtip to reversibly collapse upon collision, helping to mitigate wing damage over repeated collisions. However, the costal break may provide additional benefits beyond reducing wing wear. We tested the hypothesis that a collapsible wing tip can also dampen sudden and unpredictable body rotations caused by collisions. We designed a wing buckle hinge for an insect-scale microrobot, inspired by the costal break in wasp wings, and performed wing collision tests in a yaw-based magnetic tether system. We found that a collapsible wing tip reduced collision-induced airframe yaw rates by approximately 40% compared to a stiff wing, and that the effect was most pronounced for collisions that occurred early in the wing stroke. Our results suggest that a collapsible wingtip may simplify flight control requirements in both insects and insect-scale microrobots. We also introduce a scalable hinge design for engineering applications that recreates the nonlinear strain-weakening behaviour of a costal break.


2012 ◽  
Vol 476-478 ◽  
pp. 2485-2488
Author(s):  
Mei Jun Hu ◽  
Xing Yao Yan ◽  
Jin Yao Yan

There is a force peak at the beginning of each stroke during the insect flight, this force peak contributes a lot to the total aerodynamic force. To build a man made insect inspired man-made micro aero vehicle, this force need to be considered in the aero force model, and this model should as simple as possible in order to be used in feedback real-time control. Here we presented a simplified model to take the medium added mass effect of the wing into account. Simulated results show a high force peak at the beginning of each stroke and are quite similar to the measured forces on the physical wing model which were carried out by Dickinson et.al.


2019 ◽  
Vol 26 (2) ◽  
pp. 85-92
Author(s):  
Michał Kuźniar ◽  
Marek Orkisz

Abstract The paper describes the selection of a distributed propulsion for the AOS H2 motor glider (selection of engines, their number, and propellers) and determination of its performance. This analysis is related to the research conducted on environment friendly and hybrid propulsions in various research centres. The main aim of the analyses conducted is to increase the performance of vehicles powered by electric motors. The batteries have a low density of energy, i.e. the ratio of mass to cumulated energy. Instead of a battery set, it is possible to apply a hybrid-electric system, where the combustion engine works as a generator or an electric-hydrogen generator, where the hydrogen cell supports a small set of batteries. One of such flying vehicles, fitting in this trend, is the AOS H2 motor glider built at the Rzeszow University of Technology in cooperation with other universities. It is a hybrid aircraft, equipped with a hydrogen cell, which together with a set of batteries is a source of electricity for the Emrax 268 electric motor. To increase the vehicle's performance (the range and flight duration), it is possible to use a distributed propulsion. This type of propulsion consists in placing many electric motors along the wingspan of the aircraft. Appropriate design of such a system (propeller diameters, engine power, number of engines) can improve the aerodynamic and performance parameters of the airframe. An analysis of the performance for the selected flight trajectory for this propulsion variant was conducted and compared to the performance of the AOS H2 motor glider equipped with traditional propulsion. The consumption of hydrogen was also determined for both systems. The results obtained were presented in the diagrams and discussed in the conclusions.


2020 ◽  
Author(s):  
P. Kalyanasundaram ◽  
M. A. Willis

AbstractFlying insects track turbulent odor plumes to find mates, food and egg-laying sites. To maintain contact with the plume, insects are thought to adapt their flight control according to the distribution of odor in the plume using the timing of odor onsets and intervals between odor encounters. Although timing cues are important, few studies have addressed whether insects are capable of deriving spatial information about odor distribution from bilateral comparisons between their antennae in flight. The proboscis extension reflex (PER) associative learning protocol, originally developed to study odor learning in honeybees, was modified to show hawkmoths, Manduca sexta, can discriminate between odor stimuli arriving on either antenna. We show moths discriminated the odor arrival side with an accuracy of >70%. The information about spatial distribution of odor stimuli is thus available to moths searching for odor sources, opening the possibility that they use both spatial and temporal odor information.


2021 ◽  
pp. 019262332110679
Author(s):  
Yuval Ramot ◽  
Serge Rousselle ◽  
Michal Steiner ◽  
Yossi Lavie ◽  
Nati Ezov ◽  
...  

One of the challenging aspects of minimal invasive surgery (MIS) is intracorporal suturing, which can be significantly time-consuming. Therefore, there is a rising need for devices that can facilitate the suturing procedure in MIS. Su2ura Approximation Device (Su2ura Approximation) is a novel device developed to utilize the insertion of anchors threaded with stitches to allow a single action placement of a suture. The objective of this study was to evaluate the long-term safety and tissue approximation of Su2ura Approximation in comparison to Endo Stitch + Surgidac sutures in female domestic pigs. All incision sites were successfully closed by both methods. Firm consolidation within and around the incision site was noted in several animals in both treatment groups, which corresponded histopathologically to islands of ectopic cartilage or bone spicules within the fibrotic scar. These changes reflect heterotopic ossification that is commonly seen in the healing of abdominal operation sites in pigs. No other abnormal findings were observed throughout the study period. In conclusion, the use of Su2ura Approximation under the present experimental conditions revealed no safety concerns.


Author(s):  
Chauncey F. Graetzel ◽  
Steven N. Fry ◽  
Felix Beyeler ◽  
Yu Sun ◽  
Bradley J. Nelson

Sign in / Sign up

Export Citation Format

Share Document