scholarly journals A Caenorhabditis elegans protein with a PRDM9-like SET domain localizes to chromatin-associated foci and promotes spermatocyte gene expression, sperm production and fertility

PLoS Genetics ◽  
2018 ◽  
Vol 14 (4) ◽  
pp. e1007295 ◽  
Author(s):  
Christoph G. Engert ◽  
Rita Droste ◽  
Alexander van Oudenaarden ◽  
H. Robert Horvitz
Genetics ◽  
2001 ◽  
Vol 159 (3) ◽  
pp. 1019-1029
Author(s):  
Lei Xu ◽  
Susan Strome

Abstract Four maternal-effect sterile genes, mes-2, mes-3, mes-4, and mes-6, are essential for germline development in Caenorhabditis elegans. Homozygous mes progeny from heterozygous mothers are themselves fertile but produce sterile progeny with underproliferated and degenerated germlines. All four mes genes encode chromatin-associated proteins, two of which resemble known regulators of gene expression. To identify additional components in the MES pathway, we used RNA-mediated interference (RNAi) to test candidate genes for enhancement of the Mes mutant phenotype. Enhancement in this assay was induction of sterility a generation earlier, in the otherwise fertile homozygous progeny of heterozygous mothers, which previous results had suggested represent a sensitized genetic background. We tested seven genes predicted to encode regulators of chromatin organization for RNAi-induced enhancement of mes-3 sterility and identified one enhancer, called set-2 after the SET domain encoded by the gene. Depletion of SET-2 also enhances the sterile phenotype of mes-4 but not of mes-2 or mes-6. set-2 encodes two alternatively spliced transcripts, set-2l and set-2s, both of which are enriched in the germline of adults. In the adult germline, SET-2L protein is localized in mitotic and mid-late-stage meiotic nuclei but is undetectable in early pachytene nuclei. SET-2L protein is localized in all nuclei of embryos. The localization of SET-2L does not depend on any of the four MES proteins, and none of the MES proteins depend on SET-2 for their normal localization. Our results suggest that SET-2 participates along with the MES proteins in promoting normal germline development.


2017 ◽  
Vol 72 (10) ◽  
pp. 1305-1310 ◽  
Author(s):  
Alexander Mendenhall ◽  
Matthew M Crane ◽  
Patricia M Tedesco ◽  
Thomas E Johnson ◽  
Roger Brent

PLoS Genetics ◽  
2016 ◽  
Vol 12 (12) ◽  
pp. e1006534
Author(s):  
Guillaume Jannot ◽  
Pascale Michaud ◽  
Miguel Quévillon Huberdeau ◽  
Louis Morel-Berryman ◽  
James A. Brackbill ◽  
...  

2018 ◽  
Vol 45 (12) ◽  
pp. 651-662 ◽  
Author(s):  
Emmanuel Enoch Dzakah ◽  
Ahmed Waqas ◽  
Shuai Wei ◽  
Bin Yu ◽  
Xiaolin Wang ◽  
...  

Author(s):  
Joshua D. Brycki ◽  
Jeremy R. Chen See ◽  
Gillian R. Letson ◽  
Cade S. Emlet ◽  
Lavinia V. Unverdorben ◽  
...  

Previous research has reported effects of the microbiome on health span and life span of Caenorhabditis elegans , including interactions with evolutionarily conserved pathways in humans. We build on this literature by reporting the gene expression of Escherichia coli OP50 in wild-type (N2) and three long-lived mutants of C. elegans .


2020 ◽  
Vol 16 (12) ◽  
pp. e1007974
Author(s):  
Bánk G. Fenyves ◽  
Gábor S. Szilágyi ◽  
Zsolt Vassy ◽  
Csaba Sőti ◽  
Peter Csermely

Graph theoretical analyses of nervous systems usually omit the aspect of connection polarity, due to data insufficiency. The chemical synapse network of Caenorhabditis elegans is a well-reconstructed directed network, but the signs of its connections are yet to be elucidated. Here, we present the gene expression-based sign prediction of the ionotropic chemical synapse connectome of C. elegans (3,638 connections and 20,589 synapses total), incorporating available presynaptic neurotransmitter and postsynaptic receptor gene expression data for three major neurotransmitter systems. We made predictions for more than two-thirds of these chemical synapses and observed an excitatory-inhibitory (E:I) ratio close to 4:1 which was found similar to that observed in many real-world networks. Our open source tool (http://EleganSign.linkgroup.hu) is simple but efficient in predicting polarities by integrating neuronal connectome and gene expression data.


Genetics ◽  
1980 ◽  
Vol 96 (3) ◽  
pp. 649-664 ◽  
Author(s):  
Jonathan Hodgkin

ABSTRACT Sex determination in Caenorhabditis elegans is controlled by the X chromosome: autosome ratio, i.e. 2A;XX animals are hermaphrodite, and 2A;XO animals are male. A procedure for isolating 2A;XO animals that are transformed into hermaphrodites has been developed. Nine mutations causing this transformation have been obtained: eight are recessive, and all of these fall into a new autosomal complementation group, her-1 V. The remaining mutation (her-2) is dominant and has a genetic map location similar to that of tra-1 III. Recessive mutations of tra-1 cause the reverse transformation, transforming 2A;XX animals into males. Therefore, the her-2 mutation may result in constitutive expression of tra-1. Mutations in her-1 are without effect on XX animals, but the her-2 mutation prevents sperm production in both XX and XO animals, in addition to its effect on the sexual phenotype of XO animals. The epistatic relationships between tra and her genes are used to deduce a model for the action of these genes in controlling sex determination.


Sign in / Sign up

Export Citation Format

Share Document