scholarly journals Autocrine insulin pathway signaling regulates actin dynamics in cell wound repair

PLoS Genetics ◽  
2020 ◽  
Vol 16 (12) ◽  
pp. e1009186
Author(s):  
Mitsutoshi Nakamura ◽  
Jeffrey M. Verboon ◽  
Tessa E. Allen ◽  
Maria Teresa Abreu-Blanco ◽  
Raymond Liu ◽  
...  

Cells are exposed to frequent mechanical and/or chemical stressors that can compromise the integrity of the plasma membrane and underlying cortical cytoskeleton. The molecular mechanisms driving the immediate repair response launched to restore the cell cortex and circumvent cell death are largely unknown. Using microarrays and drug-inhibition studies to assess gene expression, we find that initiation of cell wound repair in the Drosophila model is dependent on translation, whereas transcription is required for subsequent steps. We identified 253 genes whose expression is up-regulated (80) or down-regulated (173) in response to laser wounding. A subset of these genes were validated using RNAi knockdowns and exhibit aberrant actomyosin ring assembly and/or actin remodeling defects. Strikingly, we find that the canonical insulin signaling pathway controls actin dynamics through the actin regulators Girdin and Chickadee (profilin), and its disruption leads to abnormal wound repair. Our results provide new insight for understanding how cell wound repair proceeds in healthy individuals and those with diseases involving wound healing deficiencies.

2020 ◽  
Author(s):  
Mitsutoshi Nakamura ◽  
Jeffrey M. Verboon ◽  
Tessa E. Allen ◽  
Maria Teresa Abreu-Blanco ◽  
Raymond Liu ◽  
...  

AbstractCells are exposed to frequent mechanical and/or chemical stressors that can compromise the integrity of the plasma membrane and underlying cortical cytoskeleton. The molecular mechanisms driving the immediate repair response launched to restore the cell cortex and circumvent cell death are largely unknown. Using microarrays and drug-inhibition studies to assess gene expression, we find that initiation of cell wound repair in the Drosophila model is dependent on translation, whereas transcription is required for subsequent steps. We identified 253 genes whose expression is up-regulated (80) or down-regulated (173) in response to laser wounding. A subset of these genes were validated using RNAi knockdowns and exhibit aberrant actomyosin ring assembly and/or actin remodeling defects. Strikingly, we find that the canonical insulin signaling pathway controls actin dynamics through the actin regulators Girdin and Chickadee (profilin), and its disruption leads to abnormal wound repair. Our results provide new insight for understanding how cell wound repair proceeds in healthy individuals and those with diseases involving wound healing deficiencies.


2010 ◽  
Vol 21 (20) ◽  
pp. 3529-3539 ◽  
Author(s):  
Tim Ting Chiu ◽  
Nish Patel ◽  
Alisa E. Shaw ◽  
James R. Bamburg ◽  
Amira Klip

GLUT4 vesicles are actively recruited to the muscle cell surface upon insulin stimulation. Key to this process is Rac-dependent reorganization of filamentous actin beneath the plasma membrane, but the underlying molecular mechanisms have yet to be elucidated. Using L6 rat skeletal myoblasts stably expressing myc-tagged GLUT4, we found that Arp2/3, acting downstream of Rac GTPase, is responsible for the cortical actin polymerization evoked by insulin. siRNA-mediated silencing of either Arp3 or p34 subunits of the Arp2/3 complex abrogated actin remodeling and impaired GLUT4 translocation. Insulin also led to dephosphorylation of the actin-severing protein cofilin on Ser-3, mediated by the phosphatase slingshot. Cofilin dephosphorylation was prevented by strategies depolymerizing remodeled actin (latrunculin B or p34 silencing), suggesting that accumulation of polymerized actin drives severing to enact a dynamic actin cycling. Cofilin knockdown via siRNA caused overwhelming actin polymerization that subsequently inhibited GLUT4 translocation. This inhibition was relieved by reexpressing Xenopus wild-type cofilin-GFP but not the S3E-cofilin-GFP mutant that emulates permanent phosphorylation. Transferrin recycling was not affected by depleting Arp2/3 or cofilin. These results suggest that cofilin dephosphorylation is required for GLUT4 translocation. We propose that Arp2/3 and cofilin coordinate a dynamic cycle of actin branching and severing at the cell cortex, essential for insulin-mediated GLUT4 translocation in muscle cells.


2021 ◽  
Author(s):  
Minxia Zou ◽  
Mengmeng Guo ◽  
Zhaoyang Zhou ◽  
Bingxiao Xiao ◽  
Qing Pan ◽  
...  

Abstract Actin cytoskeleton is a dynamic framework of cytoplasmic filaments that rearranges as the needs of the cell change during growth and development. Incessant turnover mechanisms allow these networks to be rapidly redeployed in defense of host cytoplasm against microbial invaders. However, the precise functions of host actin and the molecular mechanisms underlying actin rearrangements in host defense remain largely unknown. Here, we uncover the mechanism by which host actin controls innate immunity gates on plant surface to actively prevent microbial entry into internal tissue. VLN3, a villin protein from Arabidopsis is a key regulator of this process. Our in vitro and in vivo phosphorylation assays show that VLN3 is a physiological substrate of two pathogen-responsive mitogen-activated protein kinases (MAPKs). Quantitative analyses of actin dynamics and genetic studies reveal that phosphorylation of VLN3 by MAPKs govern actin remodeling to activate innate immunity gating on host surface.


Open Biology ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 180135 ◽  
Author(s):  
Mitsutoshi Nakamura ◽  
Andrew N. M. Dominguez ◽  
Jacob R. Decker ◽  
Alexander J. Hull ◽  
Jeffrey M. Verboon ◽  
...  

Repair of wounds to individual cells is crucial for organisms to survive daily physiological or environmental stresses, as well as pathogen assaults, which disrupt the plasma membrane. Sensing wounds, resealing membranes, closing wounds and remodelling plasma membrane/cortical cytoskeleton are four major steps that are essential to return cells to their pre-wounded states. This process relies on dynamic changes of the membrane/cytoskeleton that are indispensable for carrying out the repairs within tens of minutes. Studies from different cell wound repair models over the last two decades have revealed that the molecular mechanisms of single cell wound repair are very diverse and dependent on wound type, size, and/or species. Interestingly, different repair models have been shown to use similar proteins to achieve the same end result, albeit sometimes by distinctive mechanisms. Recent studies using cutting edge microscopy and molecular techniques are shedding new light on the molecular mechanisms during cellular wound repair. Here, we describe what is currently known about the mechanisms underlying this repair process. In addition, we discuss how the study of cellular wound repair—a powerful and inducible model—can contribute to our understanding of other fundamental biological processes such as cytokinesis, cell migration, cancer metastasis and human diseases.


2005 ◽  
Vol 170 (4) ◽  
pp. 571-582 ◽  
Author(s):  
Özlem Yüce ◽  
Alisa Piekny ◽  
Michael Glotzer

In anaphase, the spindle dictates the site of contractile ring assembly. Assembly and ingression of the contractile ring involves activation of myosin-II and actin polymerization, which are triggered by the GTPase RhoA. In many cells, the central spindle affects division plane positioning via unknown molecular mechanisms. Here, we dissect furrow formation in human cells and show that the RhoGEF ECT2 is required for cortical localization of RhoA and contractile ring assembly. ECT2 concentrates on the central spindle by binding to centralspindlin. Depletion of the centralspindlin component MKLP1 prevents central spindle localization of ECT2; however, RhoA, F-actin, and myosin still accumulate on the equatorial cell cortex. Depletion of the other centralspindlin component, CYK-4/MgcRacGAP, prevents cortical accumulation of RhoA, F-actin, and myosin. CYK-4 and ECT2 interact, and this interaction is cell cycle regulated via ECT2 phosphorylation. Thus, central spindle localization of ECT2 assists division plane positioning and the CYK-4 subunit of centralspindlin acts upstream of RhoA to promote furrow assembly.


2020 ◽  
Vol 22 (1) ◽  
pp. 142
Author(s):  
Carole Luthold ◽  
Alice-Anaïs Varlet ◽  
Herman Lambert ◽  
François Bordeleau ◽  
Josée N. Lavoie

The fidelity of actin dynamics relies on protein quality control, but the underlying molecular mechanisms are poorly defined. During mitosis, the cochaperone BCL2-associated athanogene 3 (BAG3) modulates cell rounding, cortex stability, spindle orientation, and chromosome segregation. Mitotic BAG3 shows enhanced interactions with its preferred chaperone partner HSPB8, the autophagic adaptor p62/SQSTM1, and HDAC6, a deacetylase with cytoskeletal substrates. Here, we show that depletion of BAG3, HSPB8, or p62/SQSTM1 can recapitulate the same inhibition of mitotic cell rounding. Moreover, depletion of either of these proteins also interfered with the dynamic of the subcortical actin cloud that contributes to spindle positioning. These phenotypes were corrected by drugs that limit the Arp2/3 complex or HDAC6 activity, arguing for a role for BAG3 in tuning branched actin network assembly. Mechanistically, we found that cortactin acetylation/deacetylation is mitotically regulated and is correlated with a reduced association of cortactin with HDAC6 in situ. Remarkably, BAG3 depletion hindered the mitotic decrease in cortactin–HDAC6 association. Furthermore, expression of an acetyl-mimic cortactin mutant in BAG3-depleted cells normalized mitotic cell rounding and the subcortical actin cloud organization. Together, these results reinforce a BAG3′s function for accurate mitotic actin remodeling, via tuning cortactin and HDAC6 spatial dynamics.


2021 ◽  
pp. mbc.E20-07-0481
Author(s):  
Alison Moe ◽  
William Holmes ◽  
Adriana E. Golding ◽  
Jessica Zola ◽  
Zachary T Swider ◽  
...  

Rho GTPases such as Rho, Rac and Cdc42 are important regulators of the cortical cytoskeleton in processes including cell division, locomotion and repair. In these processes, Rho GTPases assume characteristic patterns wherein the active GTPases occupy mutually exclusive “zones” in the cell cortex. During cell wound repair, for example, a Rho zone encircles the wound edge and is in turn encircled by a Cdc42 zone. Here we evaluated the contributions of crosstalk between Rho and Cdc42 to the patterning of their respective zones in wounded Xenopus oocytes using experimental manipulations in combination with mathematical modeling. The results show that the position of the Cdc42 zone relative the Rho zone and relative to the wound edge is controlled by the level of Rho activity. In contrast, the outer boundary of the Rho zone is limited by the level of Cdc42 activity. Models based on positive feedback within zones and negative feedback from Rho to the GEF-GAP Abr to Cdc42 capture some, but not all, of the observed behaviors. We conclude that GTPase zone positioning is controlled at the level of Rho activity and we speculate that the Cdc42 zone or something associated with it limits the spread of Rho activity. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text]


2021 ◽  
Vol 7 (13) ◽  
pp. eabc6345
Author(s):  
Shrawan Kumar Mageswaran ◽  
Wei Yuan Yang ◽  
Yogaditya Chakrabarty ◽  
Catherine M. Oikonomou ◽  
Grant J. Jensen

Cryo–electron tomography (cryo-ET) provides structural context to molecular mechanisms underlying biological processes. Although straightforward to implement for studying stable macromolecular complexes, using it to locate short-lived structures and events can be impractical. A combination of live-cell microscopy, correlative light and electron microscopy, and cryo-ET will alleviate this issue. We developed a workflow combining the three to study the ubiquitous and dynamic process of shedding in response to plasma membrane damage in HeLa cells. We found filopodia-like protrusions enriched at damage sites and acting as scaffolds for shedding, which involves F-actin dynamics, myosin-1a, and vacuolar protein sorting 4B (a component of the ‘endosomal sorting complex required for transport’ machinery). Overall, shedding is more complex than current models of vesiculation from flat membranes. Its similarities to constitutive shedding in enterocytes argue for a conserved mechanism. Our workflow can also be adapted to study other damage response pathways and dynamic cellular events.


Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 63 ◽  
Author(s):  
Nunzia Limatola ◽  
Filip Vasilev ◽  
Luigia Santella ◽  
Jong Tai Chun

While alkaloids often exert unique pharmacological effects on animal cells, exposure of sea urchin eggs to nicotine causes polyspermy at fertilization in a dose-dependent manner. Here, we studied molecular mechanisms underlying the phenomenon. Although nicotine is an agonist of ionotropic acetylcholine receptors, we found that nicotine-induced polyspermy was neither mimicked by acetylcholine and carbachol nor inhibited by specific antagonists of nicotinic acetylcholine receptors. Unlike acetylcholine and carbachol, nicotine uniquely induced drastic rearrangement of egg cortical microfilaments in a dose-dependent way. Such cytoskeletal changes appeared to render the eggs more receptive to sperm, as judged by the significant alleviation of polyspermy by latrunculin-A and mycalolide-B. In addition, our fluorimetric assay provided the first evidence that nicotine directly accelerates polymerization kinetics of G-actin and attenuates depolymerization of preassembled F-actin. Furthermore, nicotine inhibited cofilin-induced disassembly of F-actin. Unexpectedly, our results suggest that effects of nicotine can also be mediated in some non-cholinergic pathways.


2004 ◽  
Vol 165 (6) ◽  
pp. 781-788 ◽  
Author(s):  
Sebastien Carreno ◽  
Åsa E. Engqvist-Goldstein ◽  
Claire X. Zhang ◽  
Kent L. McDonald ◽  
David G. Drubin

In diverse species, actin assembly facilitates clathrin-coated vesicle (CCV) formation during endocytosis. This role might be an adaptation specific to the unique environment at the cell cortex, or it might be fundamental, facilitating CCV formation on different membranes. Proteins of the Sla2p/Hip1R family bind to actin and clathrin at endocytic sites in yeast and mammals. We hypothesized that Hip1R might also coordinate actin assembly with clathrin budding at the trans-Golgi network (TGN). Using deconvolution and time-lapse microscopy, we showed that Hip1R is present on CCVs emerging from the TGN. These vesicles contain the mannose 6-phosphate receptor involved in targeting proteins to the lysosome, and the actin nucleating Arp2/3 complex. Silencing of Hip1R expression by RNAi resulted in disruption of Golgi organization and accumulation of F-actin structures associated with CCVs on the TGN. Hip1R silencing and actin poisons slowed cathepsin D exit from the TGN. These studies establish roles for Hip1R and actin in CCV budding from the TGN for lysosome biogenesis.


Sign in / Sign up

Export Citation Format

Share Document