scholarly journals The genetic consequences of dog breed formation—Accumulation of deleterious genetic variation and fixation of mutations associated with myxomatous mitral valve disease in cavalier King Charles spaniels

PLoS Genetics ◽  
2021 ◽  
Vol 17 (9) ◽  
pp. e1009726
Author(s):  
Erik Axelsson ◽  
Ingrid Ljungvall ◽  
Priyasma Bhoumik ◽  
Laura Bas Conn ◽  
Eva Muren ◽  
...  

Selective breeding for desirable traits in strictly controlled populations has generated an extraordinary diversity in canine morphology and behaviour, but has also led to loss of genetic variation and random entrapment of disease alleles. As a consequence, specific diseases are now prevalent in certain breeds, but whether the recent breeding practice led to an overall increase in genetic load remains unclear. Here we generate whole genome sequencing (WGS) data from 20 dogs per breed from eight breeds and document a ~10% rise in the number of derived alleles per genome at evolutionarily conserved sites in the heavily bottlenecked cavalier King Charles spaniel breed (cKCs) relative to in most breeds studied here. Our finding represents the first clear indication of a relative increase in levels of deleterious genetic variation in a specific breed, arguing that recent breeding practices probably were associated with an accumulation of genetic load in dogs. We then use the WGS data to identify candidate risk alleles for the most common cause for veterinary care in cKCs–the heart disease myxomatous mitral valve disease (MMVD). We verify a potential link to MMVD for candidate variants near the heart specific NEBL gene in a dachshund population and show that two of the NEBL candidate variants have regulatory potential in heart-derived cell lines and are associated with reduced NEBL isoform nebulette expression in papillary muscle (but not in mitral valve, nor in left ventricular wall). Alleles linked to reduced nebulette expression may hence predispose cKCs and other breeds to MMVD via loss of papillary muscle integrity.

2021 ◽  
Vol 8 (2) ◽  
pp. 9
Author(s):  
Nina C. Wunderlich ◽  
Siew Yen Ho ◽  
Nir Flint ◽  
Robert J. Siegel

The morphological changes that occur in myxomatous mitral valve disease (MMVD) involve various components, ultimately leading to the impairment of mitral valve (MV) function. In this context, intrinsic mitral annular abnormalities are increasingly recognized, such as a mitral annular disjunction (MAD), a specific anatomical abnormality whereby there is a distinct separation between the mitral annulus and the left atrial wall and the basal portion of the posterolateral left ventricular myocardium. In recent years, several studies have suggested that MAD contributes to myxomatous degeneration of the mitral leaflets, and there is growing evidence that MAD is associated with ventricular arrhythmias and sudden cardiac death. In this review, the morphological characteristics of MAD and imaging tools for diagnosis will be described, and the clinical and functional aspects of the coincidence of MAD and myxomatous MVP will be discussed.


2013 ◽  
Vol 27 (4) ◽  
pp. 875-883 ◽  
Author(s):  
N.E. Zois ◽  
N.T. Olsen ◽  
S.G. Moesgaard ◽  
C.E. Rasmussen ◽  
T. Falk ◽  
...  

2020 ◽  
Vol 16 (1) ◽  
Author(s):  
G. R. Markby ◽  
V. E. Macrae ◽  
B. M. Corcoran ◽  
K. M. Summers

Abstract Background Almost all elderly dogs develop myxomatous mitral valve disease by the end of their life, but the cavalier King Charles spaniel (CKCS) has a heightened susceptibility, frequently resulting in death at a young age and suggesting that there is a genetic component to the condition in this breed. Transcriptional profiling can reveal the impact of genetic variation through differences in gene expression levels. The aim of this study was to determine whether expression patterns were different in mitral valves showing myxomatous degeneration from CKCS dogs compared to valves from non-CKCS dogs. Results Gene expression patterns in three groups of canine valves resulted in distinct separation of normal valves, diseased valves from CKCS and diseased valves from other breeds; the latter were more similar to the normal valves than were the valves from CKCS. Gene expression patterns in diseased valves from CKCS dogs were quite different from those in the valves from other dogs, both affected and normal. Patterns in all diseased valves (from CKCS and other breeds) were also somewhat different from normal non-diseased samples. Analysis of differentially expressed genes showed enrichment in GO terms relating to cardiac development and function and to calcium signalling canonical pathway in the genes down-regulated in the diseased valves from CKCS, compared to normal valves and to diseased valves from other breeds. F2 (prothrombin) (CKCS diseased valves compared to normal) and MEF2C pathway activation (CKCS diseased valves compared to non-CKCS diseased valves) had the strongest association with the gene changes. A large number of genes that were differentially expressed in the CKCS diseased valves compared with normal valves and diseased valves from other breeds were associated with cardiomyocytes including CASQ2, TNNI3 and RYR2. Conclusion Transcriptomic profiling identified gene expression changes in CKCS diseased valves that were not present in age and disease severity-matched non-CKCS valves. These genes are associated with cardiomyocytes, coagulation and extra-cellular matrix remodelling. Identification of genes that vary in the CKCS will allow exploration of genetic variation to understand the aetiology of the disease in this breed, and ultimately development of breeding strategies to eliminate this disease from the breed.


1991 ◽  
Vol 17 (2) ◽  
pp. A355
Author(s):  
Christer Sylvén ◽  
Mikael Brönnegård ◽  
Lena Hellström ◽  
Eva Jansson ◽  
Peter Sotonyi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document