scholarly journals Pyrethroid-Resistance and Presence of Two Knockdown Resistance (kdr) Mutations, F1534C and a Novel Mutation T1520I, in Indian Aedes aegypti

2015 ◽  
Vol 9 (1) ◽  
pp. e3332 ◽  
Author(s):  
Raja Babu S. Kushwah ◽  
Cherry L. Dykes ◽  
Neera Kapoor ◽  
Tridibes Adak ◽  
Om P. Singh
2019 ◽  
Vol 25 (12) ◽  
pp. 905-913 ◽  
Author(s):  
Ommer Dafalla ◽  
Adel Alsheikh ◽  
Waheed Mohammed ◽  
Khalid Shrwani ◽  
Feras Alsheikh ◽  
...  

PLoS Genetics ◽  
2021 ◽  
Vol 17 (6) ◽  
pp. e1009606
Author(s):  
Karla Saavedra-Rodriguez ◽  
Corey L. Campbell ◽  
Saul Lozano ◽  
Patricia Penilla-Navarro ◽  
Alma Lopez-Solis ◽  
...  

Pyrethroids are one of the few classes of insecticides available to control Aedes aegypti, the major vector of dengue, chikungunya, and Zika viruses. Unfortunately, evolving mechanisms of pyrethroid resistance in mosquito populations threaten our ability to control disease outbreaks. Two common pyrethroid resistance mechanisms occur in Ae. aegypti: 1) knockdown resistance, which involves amino acid substitutions at the pyrethroid target site—the voltage-gated sodium channel (VGSC)—and 2) enhanced metabolism by detoxification enzymes. When a heterogeneous population of mosquitoes is exposed to pyrethroids, different responses occur. During exposure, a proportion of mosquitoes exhibit immediate knockdown, whereas others are not knocked-down and are designated knockdown resistant (kdr). When these individuals are removed from the source of insecticide, the knocked-down mosquitoes can either remain in this status and lead to dead or recover within a few hours. The proportion of these phenotypic responses is dependent on the pyrethroid concentration and the genetic background of the population tested. In this study, we sequenced and performed pairwise genome comparisons between kdr, recovered, and dead phenotypes in a pyrethroid-resistant colony from Tapachula, Mexico. We identified single-nucleotide polymorphisms (SNPs) associated with each phenotype and identified genes that are likely associated with the mechanisms of pyrethroid resistance, including detoxification, the cuticle, and insecticide target sites. We identified high association between kdr and mutations at VGSC and moderate association with additional insecticide target site, detoxification, and cuticle protein coding genes. Recovery was associated with cuticle proteins, the voltage-dependent calcium channel, and a different group of detoxification genes. We provide a list of detoxification genes under directional selection in this field-resistant population. Their functional roles in pyrethroid metabolism and their potential uses as genomic markers of resistance require validation.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Hasan Mohammad Al-Amin ◽  
Fatema Tuj Johora ◽  
Seth R. Irish ◽  
Muhammad Riadul Haque Hossainey ◽  
Lucrecia Vizcaino ◽  
...  

Abstract Background Arboviral diseases, including dengue and chikungunya, are major public health concerns in Bangladesh where there have been unprecedented levels of transmission reported in recent years. The primary approach to control these diseases is to control the vector Aedes aegypti using pyrethroid insecticides. Although chemical control has long been practiced, no comprehensive analysis of Ae. aegypti susceptibility to insecticides has been conducted to date. The aim of this study was to determine the insecticide resistance status of Ae. aegypti in Bangladesh and investigate the role of detoxification enzymes and altered target site sensitivity as resistance mechanisms. Methods Eggs of Aedes mosquitoes were collected using ovitraps from five districts across Bangladesh and in eight neighborhoods of the capital city Dhaka, from August to November 2017. CDC bottle bioassays were conducted for permethrin, deltamethrin, malathion, and bendiocarb using 3- to 5-day-old F0–F2 non-blood-fed female mosquitoes. Biochemical assays were conducted to detect metabolic resistance mechanisms, and real-time PCR was performed to determine the frequencies of the knockdown resistance (kdr) mutations Gly1016, Cys1534, and Leu410. Results High levels of resistance to permethrin were detected in all Ae. aegypti populations, with mortality ranging from 0 to 14.8% at the diagnostic dose. Substantial resistance continued to be detected against higher (2×) doses of permethrin (5.1–44.4% mortality). Susceptibility to deltamethrin and malathion varied between populations while complete susceptibility to bendiocarb was observed in all populations. Significantly higher levels of esterase and oxidase activity were detected in most of the test populations as compared to the susceptible reference Rockefeller strain. A significant association was detected between permethrin resistance and the presence of Gly1016 and Cys1534 homozygotes. The frequency of kdr (knockdown resistance) alleles varied across the Dhaka Aedes populations. Leu410 was not detected in any of the tested populations. Conclusions The detection of widespread pyrethroid resistance and multiple resistance mechanisms highlights the urgency for implementing alternate Ae. aegypti control strategies. In addition, implementing routine monitoring of insecticide resistance in Ae. aegypti in Bangladesh will lead to a greater understanding of susceptibility trends over space and time, thereby enabling the development of improved control strategies.


Author(s):  
Lucien Yao Konan ◽  
Welbeck Achille Oumbouke ◽  
Urbain Garhapié Silué ◽  
Ibrahima Zanakoungo Coulibaly ◽  
Jean-Claude Tokou Ziogba ◽  
...  

Abstract From 2008 to 2017, the city of Abidjan, Côte d’Ivoire experienced several Aedes-borne disease epidemics which required control of the vector mosquito population based on the reduction of larval habitats and insecticidal sprays for adult mosquitoes. This study was undertaken to assess the insecticide susceptibility status of Aedes aegypti (Linnaeus) in the city of Abidjan. Immature Ae. aegypti were sampled from several larval habitats within seven communes of Abidjan and reared to adults. Three to five days old F1 emerged adults were tested for susceptibility using insecticide-impregnated papers and the synergist piperonyl butoxide (PBO) following WHO bioassay guidelines. The results showed that Ae. aegypti populations from Abidjan were resistant to 0.1% propoxur, and 1% fenitrothion, with mortality rates ranging from 0% to 54.2%. Reduced susceptibility (93.4–97.5% mortality) was observed to 0.05% deltamethrin, 0.75% permethrin, 0.05% lambda-cyhalothrin, 5% malathion, and 0.8% chlorpyrifos-methyl. This reduced susceptibility varied depending on the insecticide and the collection site. The restoration of mortality when the mosquitoes were pre-exposed to the synergist PBO suggests that increased activity of oxidases could be contributing to resistance. Three kdr mutations (V410L, V1016I, and F1534C) were present in populations tested, with low frequencies for the Leu410 (0.28) and Ile1016 (0.32) alleles and high frequencies for the Cys1534 allele (0.96). These findings will be used to inform future arbovirus vector control activities in Abidjan.


2012 ◽  
Vol 104 (2) ◽  
pp. 136-142 ◽  
Author(s):  
Cheng Chang ◽  
Xin-Yi Huang ◽  
Pin-Chun Chang ◽  
Huai-Hui Wu ◽  
Shu-Mei Dai

2016 ◽  
Vol 68 ◽  
pp. 23-32 ◽  
Author(s):  
Sulaiman S. Ibrahim ◽  
Jacob M. Riveron ◽  
Robert Stott ◽  
Helen Irving ◽  
Charles S. Wondji

Insects ◽  
2015 ◽  
Vol 6 (3) ◽  
pp. 658-685 ◽  
Author(s):  
Juli Wuliandari ◽  
Siu Lee ◽  
Vanessa White ◽  
Warsito Tantowijoyo ◽  
Ary Hoffmann ◽  
...  

2013 ◽  
Vol 107 (2) ◽  
pp. 266-276 ◽  
Author(s):  
Ying-Hsi Lin ◽  
Wei-Lun Tsen ◽  
Nai-Yueh Tien ◽  
Yi-Pey Luo

Sign in / Sign up

Export Citation Format

Share Document