scholarly journals Permethrin resistance in Aedes aegypti: Genomic variants that confer knockdown resistance, recovery, and death

PLoS Genetics ◽  
2021 ◽  
Vol 17 (6) ◽  
pp. e1009606
Author(s):  
Karla Saavedra-Rodriguez ◽  
Corey L. Campbell ◽  
Saul Lozano ◽  
Patricia Penilla-Navarro ◽  
Alma Lopez-Solis ◽  
...  

Pyrethroids are one of the few classes of insecticides available to control Aedes aegypti, the major vector of dengue, chikungunya, and Zika viruses. Unfortunately, evolving mechanisms of pyrethroid resistance in mosquito populations threaten our ability to control disease outbreaks. Two common pyrethroid resistance mechanisms occur in Ae. aegypti: 1) knockdown resistance, which involves amino acid substitutions at the pyrethroid target site—the voltage-gated sodium channel (VGSC)—and 2) enhanced metabolism by detoxification enzymes. When a heterogeneous population of mosquitoes is exposed to pyrethroids, different responses occur. During exposure, a proportion of mosquitoes exhibit immediate knockdown, whereas others are not knocked-down and are designated knockdown resistant (kdr). When these individuals are removed from the source of insecticide, the knocked-down mosquitoes can either remain in this status and lead to dead or recover within a few hours. The proportion of these phenotypic responses is dependent on the pyrethroid concentration and the genetic background of the population tested. In this study, we sequenced and performed pairwise genome comparisons between kdr, recovered, and dead phenotypes in a pyrethroid-resistant colony from Tapachula, Mexico. We identified single-nucleotide polymorphisms (SNPs) associated with each phenotype and identified genes that are likely associated with the mechanisms of pyrethroid resistance, including detoxification, the cuticle, and insecticide target sites. We identified high association between kdr and mutations at VGSC and moderate association with additional insecticide target site, detoxification, and cuticle protein coding genes. Recovery was associated with cuticle proteins, the voltage-dependent calcium channel, and a different group of detoxification genes. We provide a list of detoxification genes under directional selection in this field-resistant population. Their functional roles in pyrethroid metabolism and their potential uses as genomic markers of resistance require validation.

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Hasan Mohammad Al-Amin ◽  
Fatema Tuj Johora ◽  
Seth R. Irish ◽  
Muhammad Riadul Haque Hossainey ◽  
Lucrecia Vizcaino ◽  
...  

Abstract Background Arboviral diseases, including dengue and chikungunya, are major public health concerns in Bangladesh where there have been unprecedented levels of transmission reported in recent years. The primary approach to control these diseases is to control the vector Aedes aegypti using pyrethroid insecticides. Although chemical control has long been practiced, no comprehensive analysis of Ae. aegypti susceptibility to insecticides has been conducted to date. The aim of this study was to determine the insecticide resistance status of Ae. aegypti in Bangladesh and investigate the role of detoxification enzymes and altered target site sensitivity as resistance mechanisms. Methods Eggs of Aedes mosquitoes were collected using ovitraps from five districts across Bangladesh and in eight neighborhoods of the capital city Dhaka, from August to November 2017. CDC bottle bioassays were conducted for permethrin, deltamethrin, malathion, and bendiocarb using 3- to 5-day-old F0–F2 non-blood-fed female mosquitoes. Biochemical assays were conducted to detect metabolic resistance mechanisms, and real-time PCR was performed to determine the frequencies of the knockdown resistance (kdr) mutations Gly1016, Cys1534, and Leu410. Results High levels of resistance to permethrin were detected in all Ae. aegypti populations, with mortality ranging from 0 to 14.8% at the diagnostic dose. Substantial resistance continued to be detected against higher (2×) doses of permethrin (5.1–44.4% mortality). Susceptibility to deltamethrin and malathion varied between populations while complete susceptibility to bendiocarb was observed in all populations. Significantly higher levels of esterase and oxidase activity were detected in most of the test populations as compared to the susceptible reference Rockefeller strain. A significant association was detected between permethrin resistance and the presence of Gly1016 and Cys1534 homozygotes. The frequency of kdr (knockdown resistance) alleles varied across the Dhaka Aedes populations. Leu410 was not detected in any of the tested populations. Conclusions The detection of widespread pyrethroid resistance and multiple resistance mechanisms highlights the urgency for implementing alternate Ae. aegypti control strategies. In addition, implementing routine monitoring of insecticide resistance in Ae. aegypti in Bangladesh will lead to a greater understanding of susceptibility trends over space and time, thereby enabling the development of improved control strategies.


2021 ◽  
Author(s):  
Borel DJIAPPI TCHAMEN ◽  
Nana-Ndjangwo Stella Mariette ◽  
Vasileia Balabanidou ◽  
Konstantinos Mavridis ◽  
Makoudjou Idene ◽  
...  

Abstract Pyrethroid resistance is now expanding in the two main arboviruses vectors Aedes aegypti and Aedes albopictus from Cameroon. Although recent studies suggested the implication of target site (kdr) resistance and overexpression of detoxification enzymes as key mechanisms, the implication of additional mechanisms such as cuticular resistance has not been investigated. The present study assesses the possible implication of cuticle in Aedes species resistance to pyrethroids. High cuticular hydrocarbon (CHC) content was detected in Ae. aegypti populations from Douala and Yaoundé. The difference (38% increase) between the Douala and susceptible populations was found to be statistically significant.The study confirms the implication of cuticular-based mechanisms in resistant to pyrethroids and DDT Aedes aegypti mosquitoes from Cameroon.


2021 ◽  
Vol 15 (5) ◽  
pp. e0009393
Author(s):  
Ndeye Marie Sene ◽  
Konstantinos Mavridis ◽  
El Hadji Ndiaye ◽  
Cheikh Tidiane Diagne ◽  
Alioune Gaye ◽  
...  

Aedes aegypti is the main epidemic vector of arboviruses in Africa. In Senegal, control activities are mainly limited to mitigation of epidemics, with limited information available for Ae. aegypti populations. A better understanding of the current Ae. aegypti susceptibility status to various insecticides and relevant resistance mechanisms involved is needed for the implementation of effective vector control strategies. The present study focuses on the detection of insecticide resistance and reveals the related mechanisms in Ae. aegypti populations from Senegal. Bioassays were performed on Ae. aegypti adults from nine Senegalese localities (Matam, Louga, Barkedji, Ziguinchor, Mbour, Fatick, Dakar, Kédougou and Touba). Mosquitoes were exposed to four classes of insecticides using the standard WHO protocols. Resistance mechanisms were investigated by genotyping for pyrethroid target site resistance mutations (V1016G, V1016I, F1534C and S989P) and measuring gene expression levels of key detoxification genes (CYP6BB2, CYP9J26, CYP9J28, CYP9J32, CYP9M6, CCEae3a and GSTD4). All collected populations were resistant to DDT and carbamates except for the ones in Matam (Northern region). Resistance to permethrin was uniformly detected in mosquitoes from all areas. Except for Barkédji and Touba, all populations were characterized by a susceptibility to 0.75% Permethrin. Susceptibility to type II pyrethroids was detected only in the Southern regions (Kédougou and Ziguinchor). All mosquito populations were susceptible to 5% Malathion, but only Kédougou and Matam mosquitoes were susceptible to 0.8% Malathion. All populations were resistant to 0.05% Pirimiphos-methyl, whereas those from Louga, Mbour and Barkédji, also exhibited resistance to 1% Fenitrothion. None of the known target site pyrethroid resistance mutations was present in the mosquito samples included in the genotyping analysis (performed in > 1500 samples). In contrast, a remarkably high (20-70-fold) overexpression of major detoxification genes wasobserved, suggesting that insecticide resistance is mostly mediated through metabolic mechanisms. These data provide important evidence to support dengue vector control in Senegal.


2020 ◽  
Author(s):  
Hasan Mohammad Al-Amin ◽  
Fatema Tuj Johora ◽  
Seth R. Irish ◽  
Muhammad Riadul Haque Hossainey ◽  
Lucrecia Vizcaino ◽  
...  

AbstractBackgroundArboviral diseases including dengue and chikungunya are major public health concern in Bangladesh, with unprecedented levels of transmission reported in recent years. The primary approach to control these diseases is control of Aedes aegypti using pyrethroid insecticides. Although chemical control is long-practiced, no comprehensive analysis of Ae. aegypti susceptibility to insecticides has previously been conducted. This study aimed to determine the insecticide resistance status of Ae. aegypti in Bangladesh and investigate the role of detoxification enzymes and altered target site sensitivity as resistance mechanisms.MethodsAedes eggs were collected using ovitraps from five districts across the country and in eight neighborhoods of the capital city Dhaka from August to November 2017. CDC bottle bioassays were conducted for permethrin, deltamethrin, malathion, and bendiocarb using 3-5-day old F0-F2 non-blood fed female mosquitoes. Biochemical assays were conducted to detect metabolic resistance mechanisms and real-time PCR was performed to determine the frequencies of the knockdown resistance (kdr) mutations Gly1016, Cys1534, and Leu410.ResultsHigh levels of resistance to permethrin were detected in all Ae. aegypti populations, with mortality ranging from 0 – 14.8% at the diagnostic dose. Substantial resistance continued to be detected against higher (2X) doses of permethrin (5.1 – 44.4% mortality). Susceptibility to deltamethrin and malathion varied between populations while complete susceptibility to bendiocarb was observed in all populations. Significantly higher levels of esterase and oxidase activity were detected in most of the test populations as compared to the susceptible reference Rockefeller strain. A significant association was detected between permethrin resistance and the presence of Gly1016 and Cys1534 homozygotes. The frequency of kdr alleles varied across the Dhaka populations, and Leu410 was not detected in any of the tested populations.ConclusionsThe detection of widespread pyrethroid resistance and multiple mechanisms highlights the urgency for implementing alternate Ae. aegypti control strategies. In addition, implementing routine monitoring of insecticide resistance in Ae. aegypti in Bangladesh will lead to a greater understanding of susceptibility trends over space and time, thereby enabling the development of improved control strategies.


2014 ◽  
Vol 8 (6) ◽  
pp. e2948 ◽  
Author(s):  
Shinji Kasai ◽  
Osamu Komagata ◽  
Kentaro Itokawa ◽  
Toshio Shono ◽  
Lee Ching Ng ◽  
...  

2020 ◽  
Author(s):  
Tamar E. Carter ◽  
Araya Gebresilassie ◽  
Shantoy Hansel ◽  
Lambodhar Damodaran ◽  
Callum Montgomery ◽  
...  

AbstractThe malaria vector, Anopheles stephensi, which is typically restricted to South Asia and the Middle East, was recently detected in the Horn of Africa. Controlling the spread of this vector could involve integrated vector control that considers the status of insecticide resistance of multiple vector species in the region. Previous reports indicate that the knockdown resistance mutations (kdr) in the voltage-gated sodium channel (vgsc) are absent in both pyrethroid resistant and sensitive variants of An. stephensi in east Ethiopia but similar information on other vector species in the same areas is limited. In this study, kdr and the neighboring intron was analyzed in An. stephensi, An. arabiensis, and Culex pipiens s. l. collected in east Ethiopia between 2016 and 2017. Sequence analysis revealed that all of Cx. pipiens s.l. (n = 42) and 71.6% of the An. arabiensis (n=67) carried kdr L1014F known to confer target-site pyrethroid resistance. Intronic variation was only observed in An. stephensi (segregating sites = 6, haplotypes = 3) previously shown to have no kdr mutations. In addition, no evidence of non-neutral evolutionary processes was detected at the An. stephensi kdr intron which further supports target-site mechanism not being a major resistance mechanism in this An. stephensi population. Overall, these results suggest differences in evolved mechanisms of pyrethroid/DDT resistance in populations of vector species from the same region. Variation in insecticide resistance mechanisms in East Ethiopian mosquito vectors highlight possible species or population specific biological factors and distinct environmental exposures that shape their evolution.


2021 ◽  
Vol 15 (11) ◽  
pp. e0009871
Author(s):  
Haina Sun ◽  
Robert W. Mertz ◽  
Letícia B. Smith ◽  
Jeffrey G. Scott

Aedes aegypti is an important vector of human viral diseases. This mosquito is distributed globally and thrives in urban environments, making it a serious risk to human health. Pyrethroid insecticides have been the mainstay for control of adult A. aegypti for decades, but resistance has evolved, making control problematic in some areas. One major mechanism of pyrethroid resistance is detoxification by cytochrome P450 monooxygenases (CYPs), commonly associated with the overexpression of one or more CYPs. Unfortunately, the molecular basis underlying this mechanism remains unknown. We used a combination of RNA-seq and proteomic analysis to evaluate the molecular basis of pyrethroid resistance in the highly resistant CKR strain of A. aegypti. The CKR strain has the resistance mechanisms from the well-studied Singapore (SP) strain introgressed into the susceptible Rockefeller (ROCK) strain genome. The RNA-seq and proteomics data were complimentary; each offering insights that the other technique did not provide. However, transcriptomic results did not quantitatively mirror results of the proteomics. There were 10 CYPs which had increased expression of both transcripts and proteins. These CYPs appeared to be largely trans-regulated, except for some CYPs for which we could not rule out gene duplication. We identified 65 genes and lncRNAs as potentially being responsible for elevating the expression of CYPs in CKR. Resistance was associated with multiple loci on chromosome 1 and at least one locus on chromosome 3. We also identified five CYPs that were overexpressed only as proteins, suggesting that stabilization of CYP proteins could be a mechanism of resistance. Future studies to increase the resolution of the resistance loci, and to examine the candidate genes and lncRNAs identified here will greatly enhance our understanding of CYP-mediated resistance in A. aegypti.


2021 ◽  
Author(s):  
Linda Grigoraki ◽  
Ruth Cowlishaw ◽  
Tony Nolan ◽  
Martin Donnelly ◽  
Gareth Lycett ◽  
...  

AbstractInsecticide resistance in Anopheles mosquitoes is a major obstacle in maintaining the momentum in reducing the malaria burden; mitigating strategies require improved understanding of the underlying mechanisms. Mutations in the target site of insecticides (the voltage gated sodium channel for the most widely used pyrethroid class) and over-expression of detoxification enzymes are commonly reported, but their relative contribution to phenotypic resistance remain poorly understood. Here we present a genome editing pipeline to introduce single nucleotide polymorphisms in An. gambiae which we have used to study the effect of the classical kdr mutation L1014F (L995F based on An. gambiae numbering), one of the most widely distributed resistance alleles. Introduction of 1014F in an otherwise fully susceptible genetic background increased levels of resistance to all tested pyrethroids and DDT ranging from 9.9-fold for permethrin to >24-fold for DDT. The introduction of the 1014F allele was sufficient to reduce mortality of mosquitoes after exposure to deltamethrin treated bednets, even as the only resistance mechanism present. When 1014F was combined with over-expression of glutathione transferase Gste2, resistance to permethrin increased further demonstrating the critical combined effect between target site resistance and detoxification enzymes in vivo. We also show that mosquitoes carrying the 1014F allele in homozygosity showed fitness disadvantages including increased mortality at the larval stage and a reduction in fecundity and adult longevity, which can have consequences for the strength of selection that will apply to this allele in the field.Author SummaryEscalation of pyrethroid resistance in Anopheles mosquitoes threatens to reduce the effectiveness of our most important tools in malaria control. Studying the mechanisms underlying insecticide resistance is critical to design mitigation strategies. Here, using genome modified mosquitoes, we functionally characterize the most prevalent mutation in resistant mosquitoes, showing that it confers substantial levels of resistance to all tested pyrethroids and undermines the performance of pyrethroid-treated nets. Furthermore, we show that combining this mutation with elevated levels of a detoxification enzyme further increases resistance. The pipeline we have developed provides a robust approach to quantifying the contribution of different combinations of resistance mechanisms to the overall phenotype, providing the missing link between resistance monitoring and predictions of resistance impact.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Leslie C. Rault ◽  
Ellis J. Johnson ◽  
Scott T. O’Neal ◽  
Rui Chen ◽  
Sarah E. McComic ◽  
...  

AbstractResistance mechanisms to synthetic insecticides often include point mutations and increased expression of genes encoding detoxification enzymes. Since pyrethroids are the main adulticides used against Aedes aegypti, which vectors pathogens such as Zika virus, understanding resistance to this insecticide class is of significant relevance. We focused on adenosine triphosphate (ATP)-binding cassette (ABC) transporters in the pyrethroid-resistant Puerto Rico (PR) strain of Ae. aegypti. We investigated the expression patterns of six ABC transporters previously characterized as differentially expressed in insecticide-challenged mosquitoes, or increased mRNA expression in pyrethroid-resistant Ae. aegypti, by comparing PR to the Rockefeller (Rock) susceptible strain. No constitutive differential expression between strains was detected, but expression differences for these genes was influenced by sex and age, suggesting that their role is independent from resistance in PR. Instead, ABC transporters may be induced after insecticide exposure. Challenging mosquitoes with deltamethrin, with or without ABC transporter modulators, showed that Rock and PR responded differently, but a contribution of ABC transporters to deltamethrin toxicity is suspected. Moreover, the effect of dexamethasone, which enhanced the inhibition of nerve firing by deltamethrin, was observed using a Drosophila central nervous system preparation, showing synergy of these two compounds through the potential inhibition of ABC transporters.


Sign in / Sign up

Export Citation Format

Share Document