scholarly journals Rhabdastrellic Acid-A Induced Autophagy-Associated Cell Death through Blocking Akt Pathway in Human Cancer Cells

PLoS ONE ◽  
2010 ◽  
Vol 5 (8) ◽  
pp. e12176 ◽  
Author(s):  
Dan-Dan Li ◽  
Jing-Feng Guo ◽  
Jia-Jia Huang ◽  
Lin-Lin Wang ◽  
Rong Deng ◽  
...  
2009 ◽  
Vol 47 (6) ◽  
pp. 710-721 ◽  
Author(s):  
Maria Pia Rigobello ◽  
Valentina Gandin ◽  
Alessandra Folda ◽  
Anna-Klara Rundlöf ◽  
Aristi P. Fernandes ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Wasitta Rachakhom ◽  
Ratana Banjerdpongchai

Calomelanone, 2 ′ ,6 ′ -dihydroxy-4,4 ′ -dimethoxydihydrochalcone, possesses anticancer activities. This study was conducted to investigate the cytotoxic effect of calomelanone, a dihydrochalcone analogue, on human cancer cells and its associated mechanisms. The cytotoxic effect of calomelanone was measured by MTT assay. Annexin V-FITC/propidium iodide and DiOC6 staining that employed flow cytometry were used to determine the mode of cell death and reduction of mitochondrial transmembrane potential (MTP), respectively. Caspase activities were measured using specific substrates and colorimetric analysis. The expression levels of Bcl-2 family proteins were determined by immunoblotting. Reactive oxygen species were also measured using 2 ′ ,7 ′ -dihydrodichlorofluorescein diacetate and dihydroethidium (fluorescence dyes). Calomelanone was found to be toxic towards various human cancer cells, including acute promyelocytic HL-60 and monocytic leukemic U937 cells, in a dose-dependent manner at 24 h and human hepatocellular HepG2 cells at 48 h. However, the proliferation of HepG2 cells increased at 24 h. Calomelanone was found to induce apoptosis in HL-60 and U937 at 24 h and HepG2 apoptosis at 48 h via the intrinsic pathway by inducing MTP disruption. This compound also induced caspase-3, caspase-8, and caspase-9 activities. Calomelanone upregulated proapoptotic Bax and Bak and downregulated antiapoptotic Bcl-xL proteins in HepG2 cells. Moreover, signaling was also associated with oxidative stress in HepG2 cells. Calomelanone induced autophagy at 24 h of treatment, which was evidenced by staining with monodansylcadaverine (MDC) to represent autophagic flux. This was associated with a decrease of Akt (survival pathway) and an upregulation of Atg5 (the marker of autophagy). Thus, calomelanone induced apoptosis/regulated cell death in HL-60, U937, and HepG2 cells. However, it also induced autophagy in HepG2 depending on duration, dose, and type of cells. Thus, calomelanone could be used as a potential anticancer agent for cancer treatment. Nevertheless, acute and chronic toxicity should be further investigated in animals before conducting investigations in human patients.


2019 ◽  
Vol 68 (9) ◽  
pp. 1479-1492 ◽  
Author(s):  
Luciano Castiello ◽  
Alessandra Zevini ◽  
Elisabetta Vulpis ◽  
Michela Muscolini ◽  
Matteo Ferrari ◽  
...  

2014 ◽  
Vol 289 (48) ◽  
pp. 33425-33441 ◽  
Author(s):  
Nai-Di Yang ◽  
Shi-Hao Tan ◽  
Shukie Ng ◽  
Yin Shi ◽  
Jing Zhou ◽  
...  

2014 ◽  
Author(s):  
Zena M. Urban ◽  
Lauren van Reesema ◽  
Minglei Bian ◽  
Thomas C. Smyrk ◽  
Gloria Peterson ◽  
...  

2020 ◽  
Vol 1867 (7) ◽  
pp. 118692
Author(s):  
Faisal Thayyullathil ◽  
Anees Rahman Cheratta ◽  
Siraj Pallichankandy ◽  
Karthikeyan Subburayan ◽  
Saeed Tariq ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Chia-Jung Li ◽  
Shih-Fang Tsang ◽  
Chun-Hao Tsai ◽  
Hsin-Yi Tsai ◽  
Jong-Ho Chyuan ◽  
...  

Plants are an invaluable source of potential new anti-cancer drugs.Momordica charantiais one of these plants with both edible and medical value and reported to exhibit anticancer activity. To explore the potential effectiveness ofMomordica charantia, methanol extract ofMomordica charantia(MCME) was used to evaluate the cytotoxic activity on four human cancer cell lines, Hone-1 nasopharyngeal carcinoma cells, AGS gastric adenocarcinoma cells, HCT-116 colorectal carcinoma cells, and CL1-0 lung adenocarcinoma cells, in this study. MCME showed cytotoxic activity towards all cancer cells tested, with the approximate IC50ranging from 0.25 to 0.35 mg/mL at 24 h. MCME induced cell death was found to be time-dependent in these cells. Apoptosis was demonstrated by DAPI staining and DNA fragmentation analysis using agarose gel electrophoresis. MCME activated caspase-3 and enhanced the cleavage of downstream DFF45 and PARP, subsequently leading to DNA fragmentation and nuclear condensation. The apoptogenic protein, Bax, was increased, whereas Bcl-2 was decreased after treating for 24 h in all cancer cells, indicating the involvement of mitochondrial pathway in MCME-induced cell death. These findings indicate that MCME has cytotoxic effects on human cancer cells and exhibits promising anti-cancer activity by triggering apoptosis through the regulation of caspases and mitochondria.


Sign in / Sign up

Export Citation Format

Share Document