scholarly journals Targeted DNA Methylation Using an Artificially Bisected M.HhaI Fused to Zinc Fingers

PLoS ONE ◽  
2012 ◽  
Vol 7 (9) ◽  
pp. e44852 ◽  
Author(s):  
Brian Chaikind ◽  
Krishna Praneeth Kilambi ◽  
Jeffrey J. Gray ◽  
Marc Ostermeier
Keyword(s):  
PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
Author(s):  
Brian Chaikind ◽  
Krishna Praneeth Kilambi ◽  
Jeffrey J. Gray ◽  
Marc Ostermeier
Keyword(s):  

2018 ◽  
Vol 430 (3) ◽  
pp. 258-271 ◽  
Author(s):  
Amir Pozner ◽  
Nicholas O. Hudson ◽  
Jill Trewhella ◽  
Tommy W. Terooatea ◽  
Sven A. Miller ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
G. Filonova ◽  
Y. Lobanova ◽  
D Kaplun ◽  
S Zhenilo

AbstractTripartite motif protein 28 (TRIM28), a universal mediator of Krüppel-associated box domain zinc fingers (KRAB-ZNFs), is known to regulate DNA methylation of many repetitive elements and several imprinted loci. TRIM28 serves as a scaffold unit that is essential for the formation of stable repressor complexes. In the present study we found that TRIM28 is a binding partner for methyl-DNA binding protein Kaiso. Kaiso is a transcription factor that belongs to the BTB/POZ -zinc finger family. Recent data suggest that deficiency of Kaiso led to reduction of DNA methylation within the imprinting control region of H19/IGF2. Thus, we hypothesized that Kaiso and TRIM28 may cooperate to control methylated genes. We demonstrated that Kaiso interacts with TRIM28 via its two domains: BTB/POZ and three zinc finger domains. When bound to Kaiso’s zinc finger domains TRIM28 weakens their interactions with methylated DNA in vitro. Specific association of TRIM28 with BTB/POZ domain causes Kaiso hyperSUMOylation. Altogether our data describe a putative role of TRIM28 as a regulator of Kaiso activity.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Arnault Tauziède-Espariat ◽  
Aurore Siegfried ◽  
Yvan Nicaise ◽  
Thomas Kergrohen ◽  
Philipp Sievers ◽  
...  

AbstractThe cIMPACT-NOW Update 7 has replaced the WHO nosology of “ependymoma, RELA fusion positive” by “Supratentorial-ependymoma, C11orf95-fusion positive”. This modification reinforces the idea that supratentorial-ependymomas exhibiting fusion that implicates the C11orf95 (now called ZFTA) gene with or without the RELA gene, represent the same histomolecular entity. A hot off the press molecular study has identified distinct clusters of the DNA methylation class of ZFTA fusion-positive tumors. Interestingly, clusters 2 and 4 comprised tumors of different morphologies, with various ZFTA fusions without involvement of RELA. In this paper, we present a detailed series of thirteen cases of non-RELA ZFTA-fused supratentorial tumors with extensive clinical, radiological, histopathological, immunohistochemical, genetic and epigenetic (DNA methylation profiling) characterization. Contrary to the age of onset and MRI aspects similar to RELA fusion-positive EPN, we noted significant histopathological heterogeneity (pleomorphic xanthoastrocytoma-like, astroblastoma-like, ependymoma-like, and even sarcoma-like patterns) in this cohort. Immunophenotypically, these NFκB immunonegative tumors expressed GFAP variably, but EMA constantly and L1CAM frequently. Different gene partners were fused with ZFTA: NCOA1/2, MAML2 and for the first time MN1. These tumors had epigenetic homologies within the DNA methylation class of ependymomas-RELA and were classified as satellite clusters 2 and 4. Cluster 2 (n = 9) corresponded to tumors with classic ependymal histological features (n = 4) but also had astroblastic features (n = 5). Various types of ZFTA fusions were associated with cluster 2, but as in the original report, ZFTA:MAML2 fusion was frequent. Cluster 4 was enriched with sarcoma-like tumors. Moreover, we reported a novel anatomy of three ZFTA:NCOA1/2 fusions with only 1 ZFTA zinc finger domain in the putative fusion protein, whereas all previously reported non-RELA ZFTA fusions have 4 ZFTA zinc fingers. All three cases presented a sarcoma-like morphology. This genotype/phenotype association requires further studies for confirmation. Our series is the first to extensively characterize this new subset of supratentorial ZFTA-fused ependymomas and highlights the usefulness of ZFTA FISH analysis to confirm the existence of a rearrangement without RELA abnormality.


2019 ◽  
Vol 63 (6) ◽  
pp. 757-771 ◽  
Author(s):  
Claire Francastel ◽  
Frédérique Magdinier

Abstract Despite the tremendous progress made in recent years in assembling the human genome, tandemly repeated DNA elements remain poorly characterized. These sequences account for the vast majority of methylated sites in the human genome and their methylated state is necessary for this repetitive DNA to function properly and to maintain genome integrity. Furthermore, recent advances highlight the emerging role of these sequences in regulating the functions of the human genome and its variability during evolution, among individuals, or in disease susceptibility. In addition, a number of inherited rare diseases are directly linked to the alteration of some of these repetitive DNA sequences, either through changes in the organization or size of the tandem repeat arrays or through mutations in genes encoding chromatin modifiers involved in the epigenetic regulation of these elements. Although largely overlooked so far in the functional annotation of the human genome, satellite elements play key roles in its architectural and topological organization. This includes functions as boundary elements delimitating functional domains or assembly of repressive nuclear compartments, with local or distal impact on gene expression. Thus, the consideration of satellite repeats organization and their associated epigenetic landmarks, including DNA methylation (DNAme), will become unavoidable in the near future to fully decipher human phenotypes and associated diseases.


2020 ◽  
Vol 158 (3) ◽  
pp. S50-S51
Author(s):  
Suresh Venkateswaran ◽  
Varun Kilaru ◽  
Hari Somineni ◽  
Jason Matthews ◽  
Jeffrey Hyams ◽  
...  

2019 ◽  
Author(s):  
Christine Dinh ◽  
Juan Young ◽  
Olena Bracho ◽  
Rahul Mittal ◽  
Denise Yan ◽  
...  

2007 ◽  
Vol 40 (05) ◽  
Author(s):  
MAN Muschler ◽  
T Hillemacher ◽  
H Frieling ◽  
S Moskau ◽  
A Semmler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document