scholarly journals Microdistribution of Faunal Assemblages at Deep-Sea Hydrothermal Vents in the Southern Ocean

PLoS ONE ◽  
2012 ◽  
Vol 7 (10) ◽  
pp. e48348 ◽  
Author(s):  
Leigh Marsh ◽  
Jonathan T. Copley ◽  
Veerle A. I. Huvenne ◽  
Katrin Linse ◽  
William D. K. Reid ◽  
...  
2019 ◽  
Vol 6 (11) ◽  
pp. 191501 ◽  
Author(s):  
Katrin Linse ◽  
Jonathan T. Copley ◽  
Douglas P. Connelly ◽  
Robert D. Larter ◽  
David A. Pearce ◽  
...  

Faunal assemblages at hydrothermal vents associated with island-arc volcanism are less well known than those at vents on mid-ocean ridges and back-arc spreading centres. This study characterizes chemosynthetic biotopes at active hydrothermal vents discovered at the Kemp Caldera in the South Sandwich Arc. The caldera hosts sulfur and anhydrite vent chimneys in 1375–1487 m depth, which emit sulfide-rich fluids with temperatures up to 212°C, and the microbial community of water samples in the buoyant plume rising from the vents was dominated by sulfur-oxidizing Gammaproteobacteria. A total of 12 macro- and megafaunal taxa depending on hydrothermal activity were collected in these biotopes, of which seven species were known from the East Scotia Ridge (ESR) vents and three species from vents outside the Southern Ocean. Faunal assemblages were dominated by large vesicomyid clams, actinostolid anemones, Sericosura sea spiders and lepetodrilid and cocculinid limpets, but several taxa abundant at nearby ESR hydrothermal vents were rare such as the stalked barnacle Neolepas scotiaensis . Multivariate analysis of fauna at Kemp Caldera and vents in neighbouring areas indicated that the Kemp Caldera is most similar to vent fields in the previously established Southern Ocean vent biogeographic province, showing that the species composition at island-arc hydrothermal vents can be distinct from nearby seafloor-spreading systems. δ 13 C and δ 15 N isotope values of megafaunal species analysed from the Kemp Caldera were similar to those of the same or related species at other vent fields, but none of the fauna sampled at Kemp Caldera had δ 13 C values, indicating nutritional dependence on Epsilonproteobacteria, unlike fauna at other island-arc hydrothermal vents.


2019 ◽  
Vol 85 (4) ◽  
pp. 426-439 ◽  
Author(s):  
Katrin Linse ◽  
Verity Nye ◽  
Jonathan T Copley ◽  
Chong Chen

ABSTRACT The recent discovery and exploration of deep-sea hydrothermal vent fields in the Mid-Cayman Spreading Centre, Caribbean Sea (Beebe Vent Field, 4956–4972 m depth) and the East Scotia Ridge, Southern Ocean (E2 and E9 vent fields, 2394–2641 m depth) have yielded extensive collections of two new provannid species, Provanna beebei n. sp. and P. cooki n. sp. Morphological and molecular taxonomy (530 bp of the mitochondrial cytochrome c oxidase subunit I gene) confirm P. beebei n. sp. and P. cooki n. sp. as distinct species; these species are formally described, and details are provided of their distribution, habitat and species associations. Bayesian and maximum likelihood analyses support the placement of P. beebei n. sp. and P. cooki n. sp within the genus Provanna and show that these two new deep-sea species form a well-supported clade with the abyssal West Pacific P. cingulata. Provanna beebei n. sp. and P. cooki n. sp. represent the first records of Provanna from hydrothermal vents in the Caribbean Sea and Southern Ocean, respectively, and extend the known geographic range of the genus. For the first time, intraspecific phenotypic variation in size and sculpture has been reported for Provanna. At the East Scotia Ridge, shell-size frequency distributions and median shell size of P. cooki n. sp. varied significantly between the E2 and E9 vent fields, as well as between diffuse flow and high-temperature venting habitats within each field. The variation in shell sculpture in relation to habitat was also observed in P. cooki n. sp.


Zootaxa ◽  
2017 ◽  
Vol 4353 (1) ◽  
pp. 51 ◽  
Author(s):  
WAGNER F. MAGALHÃES ◽  
KATRIN LINSE ◽  
HELENA WIKLUND

The genus Raricirrus is characterized by the absence of feeding palps, presence of filamentous branchiae, posterior segments shorter and wider than preceding ones, and by having diverse types of chaetae, including serrate capillaries, long natatory capillaries, falcate and finely pectinate, coarsely serrate chaetae and simple curved spines. A new species of Raricirrus is proposed based on morphological and mitochondrial DNA data. The K2P distance comparison of 16S and COI sequences from Raricirrus specimens collected from sunken wood in the deep-sea (3100 m) off Monterey, California, differed in less than 0.02 in both loci from those of another undescribed Raricirrus species collected at deep-sea hydrothermal vents in the East Scotia Ridge, Southern Ocean, and they are considered conspecific. This species is unique among its congeners by the lack of serrate chaetae, presence of acicular spines and neuropodial capillaries. Raricirrus jennae sp. nov. has only long capillaries on anterior notopodia, straight acicular spines with companion capillaries on posterior notopodia (from chaetigers 15–20), and similar acicular spines and companion capillaries throughout neuropodia. Raricirrus jennae sp. nov. appears to be an opportunistic and widely distributed species. The genus Raricirrus is emended to include the presence of acicular spines and keys to all cirratulid and ctenodrilid genera and Raricirrus species are presented. 


2013 ◽  
Vol 110 ◽  
pp. 69-79 ◽  
Author(s):  
Gritta Veit-Köhler ◽  
Katja Guilini ◽  
Ilka Peeken ◽  
Petra Quillfeldt ◽  
Christoph Mayr

Sign in / Sign up

Export Citation Format

Share Document