scholarly journals Indirect Methods Produce Higher Estimates of Fine Root Production and Turnover Rates than Direct Methods

PLoS ONE ◽  
2012 ◽  
Vol 7 (11) ◽  
pp. e48989 ◽  
Author(s):  
Z. Y. Yuan ◽  
Han Y. H. Chen
2013 ◽  
Vol 59 (3) ◽  
Author(s):  
Bohdan Konôpka ◽  
Jozef Pajtík ◽  
Miriam Maľová

AbstractFine roots (defined by a maximum diameter of 2 mm) and assimilatory organs are the compartments which rotate carbon much faster than any other tree part. We focused on quantification of fine roots in young European beech and Norway spruce trees growing under the same ecological conditions. Standing stock of fine roots was estimated by soil coring during 2009 - 2012. Fine root production was established by the in-growth bag method. Standing stock and productions of fine roots were comparable in both tree species. The quantity of fine root biomass (at a soil depth of 0 -50 cm) varied inter-annually between 6.08 and 7.41 t per ha in the beech and from 5.10 to 6.49 t per ha in the spruce stand. Annual production of fine roots (soil depth of 0 - 30 cm) was between 1.11 and 1.63 t ha-1 in beech and between 0.95 and 1.54 t.ha-1 in spruce. We found that fine root standing stock at the beginning of each growing season was related to climatic conditions in the previous year. Annual fine root production was influenced by the climatic situation of the current year. In general, a maximum standing stock of fine roots as well as a relatively slow fine root turnover is expected in young forest stands. Whereas production of fine roots prevailed over mortality in a favorable year (sufficiency of precipitations and slightly above-average temperatures in 2010), there was a reverse situation in an unfavorable year (drought episodes in 2011). We concluded that although both forest types represented contrasting turnovers of assimilatory organs (once a year and once in 5 years in beech and spruce respectively), fine root turnover rates were very similar (approx. once per four years).


2014 ◽  
Vol 59 ◽  
pp. 84-90 ◽  
Author(s):  
A. Montagnoli ◽  
M. Terzaghi ◽  
G.S. Scippa ◽  
D. Chiatante

2005 ◽  
Vol 272 (1-2) ◽  
pp. 1-10 ◽  
Author(s):  
L. B. Guo ◽  
M. J. Halliday ◽  
S. J. M. Siakimotu ◽  
R. M. Gifford

2011 ◽  
pp. 428-444 ◽  
Author(s):  
D. Hertel ◽  
Ch. Leuschner ◽  
L. A. Bruijnzeel ◽  
F. N. Scatena ◽  
L. S. Hamilton

Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 940
Author(s):  
Bohdan Konôpka ◽  
Milan Barna ◽  
Michal Bosela ◽  
Martin Lukac

This study reports on an investigation of fine root and foliage productivity in forest stands dominated by European beech (Fagus sylvatica L.) and exposed to contrasting intensities of mature forest harvesting. The main aim of this study was to consider the long-term effects of canopy manipulation on resource acquisition biomass compartments in beech. We made use of an experiment established in 1989, when five different light availability treatments were started in plots within a uniform forest stand, ranging from no reduction in tree density to full mature forest removal. We measured fine root standing stock in the 0–30 cm soil layer by coring in 2013 and then followed annual fine root production (in-growth cores) and foliage production (litter baskets) in 2013–2015. We found that the plot where the tree density was reduced by 30% had the lowest foliage and the highest fine root production. In 2013, this plot had the highest fine root turnover rate (0.8 year−1), while this indicator of fine root dynamics was much lower in the other four treatments (around 0.3 year−1). We also found that the annual fine root production represented around two thirds of annual foliage growth on the mass basis in all treatments. While our findings support the maintenance of source and sink balance in woody plants, we also found a long-lasting effect of tree density manipulation on investment into resource acquisition compartments in beech forests.


1987 ◽  
Vol 17 (8) ◽  
pp. 909-912 ◽  
Author(s):  
W. A. Kurz ◽  
J. P. Kimmins

Fine root production rates are most commonly calculated from periodic measurements of live and dead fine root biomass. The accuracy of production estimates based on this method is very sensitive to violations of the inherent assumptions, particularly the assumption that the processes of fine root production and mortality are temporally separate. A simple model was used to simulate data for a variety of seasonal patterns of live and dead fine root biomass. Fine root production and mortality rates were calculated from these simulated data using two different computational methods. Comparison of the calculated rates with the known rates (the rates used to generate the seasonal patterns) revealed that violations of the above assumptions can result in inaccurate rate estimates. When fine root production and mortality occur simultaneously within a sampling interval, the calculated production rate will greatly underestimate the true value. Additional error in the rate estimates may result from sampling error associated with the fine root biomass data. The model suggested that sampling error can cause either overestimation or underestimation of fine root production.


2007 ◽  
Vol 37 (10) ◽  
pp. 1954-1965 ◽  
Author(s):  
Oscar J. Valverde-Barrantes

Although significant advances have been made in understanding terrestrial carbon cycling, there is still a large uncertainty about the variability of carbon (C) fluxes at local scales. Using a carbon mass-balance approach, I investigated the relationships between fine detritus production and soil respiration for five tropical tree species established on 16-year-old plantations. Total fine detritus production ranged from 0.69 to 1.21 kg C·m–2·year–1 with significant differences among species but with no correlation between litterfall and fine-root growth. Soil CO2 emissions ranged from 1.61 to 2.36 kg C·m–2·year–1 with no significant differences among species. Soil respiration increased with fine-root production but not with litterfall, suggesting that soil C emissions may depend more on belowground inputs or that both fine root production and soil respiration are similarly influenced by an external factor. Estimates of root + rhizosphere respiration comprised 52% of total soil respiration on average, and there was no evidence that rhizosphere respiration was associated with fine-root growth rates among species. These results suggest that inherent differences in fine-root production among species, rather than differences in aboveground litterfall, might play a main role explaining local-scale, among-forest variations in soil C emissions.


Sign in / Sign up

Export Citation Format

Share Document