scholarly journals Large-Scale Event Extraction from Literature with Multi-Level Gene Normalization

PLoS ONE ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. e55814 ◽  
Author(s):  
Sofie Van Landeghem ◽  
Jari Björne ◽  
Chih-Hsuan Wei ◽  
Kai Hakala ◽  
Sampo Pyysalo ◽  
...  
2021 ◽  
Vol 288 ◽  
pp. 125519
Author(s):  
Carole Brunet ◽  
Oumarou Savadogo ◽  
Pierre Baptiste ◽  
Michel A. Bouchard ◽  
Céline Cholez ◽  
...  

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Xianyue Li ◽  
Yufei Pang ◽  
Chenxia Zhao ◽  
Yang Liu ◽  
Qingzhen Dong

AbstractGraph partition is a classical combinatorial optimization and graph theory problem, and it has a lot of applications, such as scientific computing, VLSI design and clustering etc. In this paper, we study the partition problem on large scale directed graphs under a new objective function, a new instance of graph partition problem. We firstly propose the modeling of this problem, then design an algorithm based on multi-level strategy and recursive partition method, and finally do a lot of simulation experiments. The experimental results verify the stability of our algorithm and show that our algorithm has the same good performance as METIS. In addition, our algorithm is better than METIS on unbalanced ratio.


2016 ◽  
Vol 12 (2) ◽  
pp. 588-597 ◽  
Author(s):  
Jun Wu ◽  
Xiaodong Zhao ◽  
Zongli Lin ◽  
Zhifeng Shao

Transcriptional regulation is a basis of many crucial molecular processes and an accurate inference of the gene regulatory network is a helpful and essential task to understand cell functions and gain insights into biological processes of interest in systems biology.


2016 ◽  
Vol 17 (3) ◽  
pp. 913-938 ◽  
Author(s):  
Daniela Rabiser ◽  
Herbert Prähofer ◽  
Paul Grünbacher ◽  
Michael Petruzelka ◽  
Klaus Eder ◽  
...  

2020 ◽  
Author(s):  
Yu Wang ◽  
ZAHEER ULLAH KHAN ◽  
Shaukat Ali ◽  
Maqsood Hayat

Abstract BackgroundBacteriophage or phage is a type of virus that replicates itself inside bacteria. It consist of genetic material surrounded by a protein structure. Bacteriophage plays a vital role in the domain of phage therapy and genetic engineering. Phage and hydrolases enzyme proteins have a significant impact on the cure of pathogenic bacterial infections and disease treatment. Accurate identification of bacteriophage proteins is important in the host subcellular localization for further understanding of the interaction between phage, hydrolases, and in designing antibacterial drugs. Looking at the significance of Bacteriophage proteins, besides wet laboratory-based methods several computational models have been developed so far. However, the performance was not considerable due to inefficient feature schemes, redundancy, noise, and lack of an intelligent learning engine. Therefore we have developed an anovative bi-layered model name DeepEnzyPred. A Hybrid feature vector was obtained via a novel Multi-Level Multi-Threshold subset feature selection (MLMT-SFS) algorithm. A two-dimensional convolutional neural network was adopted as a baseline classifier.ResultsA conductive hybrid feature was obtained via a serial combination of CTD and KSAACGP features. The optimum feature was selected via a Novel Multi-Level Multi-Threshold Subset Feature selection algorithm. Over 5-fold jackknife cross-validation, an accuracy of 91.6 %, Sensitivity of 63.39%, Specificity 95.72%, MCC of 0.6049, and ROC value of 0.8772 over Layer-1 were recorded respectively. Similarly, the underline model obtained an Accuracy of 96.05%, Sensitivity of 96.22%, Specificity of 95.91%, MCC of 0.9219, and ROC value of 0.9899 over layer-2 respectivily.ConclusionThis paper presents a robust and effective classification model was developed for bacteriophage and their types. Primitive features were extracted via CTD and KSAACGP. A novel method (MLMT-SFS ) was devised for yielding optimum hybrid feature space out of primitive features. The result drew over hybrid feature space and 2D-CNN shown an excellent classification. Based on the recorded results, we believe that the developed predictor will be a valuable resource for large scale discrimination of unknown Phage and hydrolase enzymes in particular and new antibacterial drug design in pharmaceutical companies in general.


Author(s):  
Rotem Israel-Fishelson ◽  
Arnon Hershkovitz

Persistence is considered a crucial factor for success in online learning environments. However, in interactive game-based learning environments, persistence in progressing in the game may come at the expense of investing in each of the game's levels. That is, the motivation to complete the game may have a deleterious effect on learning at specific levels and hence on learning from the game in general. Therefore, it is imperative that research focuses on micro-persistence, i.e., persistence during each component of the learning process. Taking a learning analytics approach, this large-scale log-based study (N=25,812 elementary- and middle-school students) examines micro-persistence within the context of learning computational thinking, a key skill for the 21st-century. Data was collected and analyzed from an online, game-based learning environment (CodeMonkey™). Results suggest that the acquisition of computational thinking is a multi-dimensional process, and that persistence is a crucial factor for success in multi-level game-based learning environments. The authors also found that game-based learning environments may prove effective in narrowing the gap between high-and low-achieving students.


Sign in / Sign up

Export Citation Format

Share Document