scholarly journals In Vitro Characterization of Circulating Endothelial Progenitor Cells Isolated from Patients with Acute Coronary Syndrome

PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e56377 ◽  
Author(s):  
Diana Campioni ◽  
Giorgio Zauli ◽  
Stefania Gambetti ◽  
Gianluca Campo ◽  
Antonio Cuneo ◽  
...  
2009 ◽  
Vol 60 (3) ◽  
pp. 263-274 ◽  
Author(s):  
Roberta A. Thomas ◽  
Dana C. Pietrzak ◽  
Marshall S. Scicchitano ◽  
Heath C. Thomas ◽  
David C. McFarland ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1819-1819
Author(s):  
Joaquin J. Jimenez ◽  
Alexander Ferreira ◽  
Hannah J. Dodson ◽  
Katherine M. Lens ◽  
Lucia M. Mauro ◽  
...  

Abstract INTRODUCTION: High cholesterol (HC) is known to adversely affect endothelial cells (EC) and has been shown to correlate with decreased levels of circulating endothelial progenitor cells (CEPC). We assayed endothelial microparticles (EMP), a sensitive indicator of EC perturbation, to investigate relations among HC, CEPC, and injury of coronary artery endothelial cells (CAEC), both in vivo and in vitro. METHODS: Twelve subjects with normal cholesterol (150 ±30 mg/dL, control) and 12 with HC (250 ±25) were studied. EMP were assayed by flow cytometry using fluorescent antibodies and CAEC were cultured as previously described [Jimenez et al, Thromb Res 109:175, 2003]. CEPC were isolated, cultured, and assayed for endothelial colony formation (CFU) as described [Hill et al, NEJM 348:593, 2003]. RESULTS: Comparing the two groups, EMP measured by CD31+/CD42b− were nearly 2.5-fold elevated in HC as compared to controls (1.7 ±0.5 ×106/mL vs.0.35 ±0.02 ×106/mL; p<0.01). Cholesterol levels correlated well with this measure of EMP (R=0.60, p=0.002). However, no significant correlation was found between CD62E+ EMP and cholesterol levels. Assay of CEPC revealed a nearly 2.5-fold decrease in CFU in HC vs. controls (10 ±2 vs. 25 ±4; p<0.01). In studies in vitro, CEPC from controls were cultured in presence of 20% 0.1μm filtered plasma from members of both groups. The HC group plasma inhibited CEPC colony formation by almost 50% (23 ±3.5 CFU for control plasma vs. 13 ±4 colonies for HC plasma). We next assessed the longer-term effect of HC plasma on CAEC cultures. Six-day culture of CAEC in the presence of 20% plasma resulted in a significant increase of CD31+/CD42b− EMP from CAEC treated with HC plasma vs. normal plasma (6.5 ±0.7 ×106/mL vs. 0.23 ±0.03 ×106/mL; p=0.02). CONCLUSION: These results suggest that EMP are useful markers to monitor cholesterol mediated-EC changes. High EMP levels inversely reflect the vascular endothelial cell regeneration potential due to decreased circulating endothelial progenitor cells.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1535-1535 ◽  
Author(s):  
Elisa Bonetti ◽  
Vittorio Rosti ◽  
Laura Villani ◽  
Rita Campanelli ◽  
Gaetano Bergamaschi ◽  
...  

Abstract Bone marrow and spleen neoangiogenesis is a relevant feature of patients with myelofibrosis (MF). We have previously reported that patients with MF have an increased percentage of circulating endothelial progenitor cells (EPC) assessed as CD34+CD133+VEGFR2+ cells compared with patients with other Ph-negative myeloproliferative disorders (polycythemia vera, PV, and essential thrombocytemia, ET) and healthy subjects. However, neither the functional activity of these putative EPC nor their belonging to the malignant clone have been yet fully characterized. In order to address these issues we have grown in vitro EPC-derived colonies from the peripheral blood (PB) of 36 patients with MF, 9 patients with PV or ET and 10 healthy subjects. Seventeen MF patients harbored a V617F JAK-2 mutation (8 heterozygous and 9 homozygous) whereas 2 patients showed a W515L MPL mutation (both heterozygous). Eight out of 9 PV/ET patients had a V617F JAK-2 mutation (5 heterozygous and 3 homozygous). Mononuclear cells were cultured in collagen coated 6 well plates in the presence of EBM-2MV medium according to Ingram et al (Blood104:2752; 2004). The endothelial origin of the colonies was ascertained by assessment of the expression of CD105, CD146, CD144, CD31, vWf, VEGFR-2, CD14 and CD45 antigens. V617F JAK-2 and W515L MPL mutations were assessed by PCR, followed by enzymatic digestion, of endothelial cells after tripsinization of the EPC-derived colonies. The median frequency (number of colonies per 107 mononuclear cells plated) of EPC-derived colonies was statistically higher in MF patients (0.25, range 0–8.1) compared to healthy subjects (0.05, 0–0.3; P=0.037), but not different form that of PV/ET patients (0, 0–4.4; P=NS). Immunophenotyping confirmed that the cells expressed the endothelial antigens CD105, CD146, CD144, CD31, vWf, and VEGFR-2 but not the hematopoietic specific antigens CD45 and CD14. The capacity of colony-derived endothelial cells of MF patients to form capillary-like structures in the Matrigel assay was not different from that of healthy subjects. No correlation was found between the number of colonies and the mutational status of either JAK-2 or MPL. In 11 MF patients harboring either a JAK-2 (n=9) or a MPL (n=2) mutation, colony growth was observed and PCR was performed on EPC-derived colonies. In 0/9 and 0/2 cases neither JAK-2 nor MPL mutations were found, respectively. In addition, no V617F JAK-2 mutation was found in the EPC-derived colonies of 8 PV/ET patients who carried the mutation in their granulocytes. Taken together, our data show that patients with MF have an increased frequency of EPC in their PB compared to healthy subjects and that these mobilized EPC are not clonally-related to the JAK-2 or MPL mutated clone. Whether or not circulating EPC derive from an earlier progenitor cell compared to the one in which the JAK-2/MPL mutations arise remains to be determined.


Blood ◽  
2005 ◽  
Vol 106 (5) ◽  
pp. 1525-1531 ◽  
Author(s):  
David A. Ingram ◽  
Noel M. Caplice ◽  
Mervin C. Yoder

Abstract The field of vascular biology has been stimulated by the concept that circulating endothelial progenitor cells (EPCs) may play a role in neoangiogenesis (postnatal vasculogenesis). One problem for the field has been the difficulty in accurately defining an EPC. Likewise, circulating endothelial cells (CECs) are not well defined. The lack of a detailed understanding of the proliferative potential of EPCs and CECs has contributed to the controversy in identifying these cells and understanding their biology in vitro or in vivo. A novel paradigm using proliferative potential as one defining aspect of EPC biology suggests that a hierarchy of EPCs exists in human blood and blood vessels. The potential implications of this view in relation to current EPC definitions are discussed.


Sign in / Sign up

Export Citation Format

Share Document