scholarly journals The Root Herbivore History of the Soil Affects the Productivity of a Grassland Plant Community and Determines Plant Response to New Root Herbivore Attack

PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e56524 ◽  
Author(s):  
Ilja Sonnemann ◽  
Stefan Hempel ◽  
Maria Beutel ◽  
Nicola Hanauer ◽  
Stefan Reidinger ◽  
...  
2019 ◽  
Vol 46 (1) ◽  
pp. 63-75 ◽  
Author(s):  
Wei Huang ◽  
Zoe Bont ◽  
Maxime R. Hervé ◽  
Christelle A. M. Robert ◽  
Matthias Erb

AbstractPlants experience seasonal fluctuations in abiotic and biotic factors such as herbivore attack rates. If and how root defense expression co-varies with seasonal fluctuations in abiotic factors and root herbivore attack rates is not well understood. Here, we evaluated seasonal changes in defensive root latex chemistry of Taraxacum officinale plants in the field and correlated the changes with seasonal fluctuations in abiotic factors and damage potential by Melolontha melolontha, a major natural enemy of T. officinale. We then explored the causality and consequences of these relationships under controlled conditions. The concentration of the defensive sesquiterpene lactone taraxinic acid β-D glucopyranosyl ester (TA-G) varied substantially over the year and was most strongly correlated to mean monthly temperature. Both temperature and TA-G levels were correlated with annual fluctuations in potential M. melolontha damage. Under controlled conditions, plants grown under high temperature produced more TA-G and were less attractive for M. melolontha. However, temperature-dependent M. melolontha feeding preferences were not significantly altered in TA-G deficient transgenic lines. Our results suggest that fluctuations in temperature leads to variation in the production of a root defensive metabolites that co-varies with expected attack of a major root herbivore. Temperature-dependent herbivore preference, however, is likely to be modulated by other phenotypic alterations.


2019 ◽  
Author(s):  
Zoe Bont ◽  
Marc Pfander ◽  
Christelle A. M. Robert ◽  
Meret Huber ◽  
Erik H. Poelman ◽  
...  

AbstractPlants allow their offspring to escape unfavourable local conditions through seed dispersal. Whether plants use this strategy to escape herbivores is not well understood. Here, we explore how different Taraxacum officinale populations modify seed dispersal in response to root herbivore attack by Melolontha melolontha in the field. Root herbivore attack increases seed dispersal potential through a reduction in seed weight in populations that have evolved under high root herbivore pressure, but not in populations that have evolved under low pressure. This increase in dispersal potential is associated with reduced germination, suggesting that adapted plants trade dispersal for establishment. Analysis of vegetative growth parameters suggests that increased dispersal is not the result of stress flowering. These results suggest that root herbivory selects for genotypes that increase their dispersal ability in response to herbivore attack.


2010 ◽  
Vol 260 (4) ◽  
pp. 543-548 ◽  
Author(s):  
Raymond B. Iglay ◽  
Bruce D. Leopold ◽  
Darren A. Miller ◽  
L. Wes Burger

Oecologia ◽  
2021 ◽  
Author(s):  
Maite Fernández de Bobadilla ◽  
Roel Van Wiechen ◽  
Gerrit Gort ◽  
Erik H. Poelman

AbstractIn nature, plants interact with multiple insect herbivores that may arrive simultaneously or sequentially. There is extensive knowledge on how plants defend themselves against single or dual attack. However, we lack information on how plants defend against the attack of multiple herbivores that arrive sequentially. In this study, we investigated whether Brassica nigra L. plants are able to defend themselves against caterpillars of the late-arriving herbivore Plutella xylostella L., when plants had been previously exposed to sequential attack by four other herbivores (P. xylostella, Athalia rosae, Myzus persicae and Brevicoryne brassicae). We manipulated the order of arrival and the history of attack by four herbivores to investigate which patterns in sequential herbivory determine resistance against the fifth attacker. We recorded that history of sequential herbivore attack differentially affected the capability of B. nigra plants to defend themselves against caterpillars of P. xylostella. Caterpillars gained less weight on plants attacked by a sequence of four episodes of attack by P. xylostella compared to performance on plants that were not previously damaged by herbivores. The number of times the plant was attacked by herbivores of the same feeding guild, the identity of the first attacker, the identity and the guild of the last attacker as well as the order of attackers within the sequence of multiple herbivores influenced the growth of the subsequent herbivory. In conclusion, this study shows that history of sequential attack is an important factor determining plant resistance to herbivores.


2020 ◽  
Vol 287 (1921) ◽  
pp. 20192930 ◽  
Author(s):  
Zoe Bont ◽  
Marc Pfander ◽  
Christelle A. M. Robert ◽  
Meret Huber ◽  
Erik H. Poelman ◽  
...  

A plant's offspring may escape unfavourable local conditions through seed dispersal. Whether plants use this strategy to escape insect herbivores is not well understood. Here, we explore how different dandelion ( Taraxacum officinale agg.) populations, including diploid outcrossers and triploid apomicts, modify seed dispersal in response to root herbivore attack by their main root-feeding natural enemy, the larvae of the common cockchafer Melolontha melolontha. In a manipulative field experiment, root herbivore attack increased seed dispersal potential through a reduction in seed weight in populations that evolved under high root herbivore pressure, but not in populations that evolved under low pressure. This increase in dispersal potential was independent of plant cytotype, but associated with a reduction in germination rate, suggesting that adapted dandelions trade dispersal for establishment upon attack by root herbivores. Analysis of vegetative growth parameters suggested that the increased dispersal capacity was not the result of stress flowering. In summary, these results suggest that root herbivory selects for an induced increase in dispersal ability in response to herbivore attack. Induced seed dispersal may be a strategy that allows adapted plants to escape from herbivores.


PLoS Biology ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. e1002332 ◽  
Author(s):  
Meret Huber ◽  
Janina Epping ◽  
Christian Schulze Gronover ◽  
Julia Fricke ◽  
Zohra Aziz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document