herbivore pressure
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 15)

H-INDEX

17
(FIVE YEARS 3)

2021 ◽  
Vol 288 (1961) ◽  
Author(s):  
Patrick Grof-Tisza ◽  
Richard Karban ◽  
Muhammad Usman Rasheed ◽  
Amélie Saunier ◽  
James D. Blande

Plant-to-plant volatile-mediated communication and subsequent induced resistance to insect herbivores is common. Less clear is the adaptive significance of these interactions; what selective mechanisms favour plant communication and what conditions allow individuals to benefit by both emitting and responding to cues? We explored the predictions of two non-exclusive hypotheses to explain why plants might emit cues, the kin selection hypothesis (KSH) and the mutual benefit hypothesis (MBH). We examined 15 populations of sagebrush that experience a range of naturally occurring herbivory along a 300 km latitudinal transect. As predicted by the KSH, we found several uncommon chemotypes with some chemotypes occurring only within a single population. Consistent with the MBH, chemotypic diversity was negatively correlated with herbivore pressure; sites with higher levels of herbivory were associated with a few common cues broadly recognized by most individuals. These cues varied among different populations. Our results are similar to those reported for anti-predator signalling in vertebrates.


Ecosystems ◽  
2021 ◽  
Author(s):  
Rajendra P. Ghimire ◽  
Tarja Silfver ◽  
Kristiina Myller ◽  
Elina Oksanen ◽  
Jarmo K. Holopainen ◽  
...  

Abstract The biogenic volatile organic compounds, BVOCs have a central role in ecosystem–atmosphere interactions. High-latitude ecosystems are facing increasing temperatures and insect herbivore pressure, which may affect their BVOC emission rates, but evidence and predictions of changes remain scattered. We studied the long-term effects of + 3 °C warming and reduced insect herbivory (achieved through insecticide sprayings) on mid- and late summer BVOC emissions from field layer vegetation, supplemented with birch saplings, and the underlying soil in Subarctic mountain birch forest in Finland in 2017–2018. Reduced insect herbivory decreased leaf damage by 58–67% and total ecosystem BVOC emissions by 44–72%. Of the BVOC groups, total sesquiterpenes had 70–80% lower emissions with reduced herbivory, and in 2017 the decrease was greater in warmed plots (89% decrease) than in ambient plots (34% decrease). While non-standardized total BVOC, monoterpene, sesquiterpene and GLV emissions showed instant positive responses to increasing chamber air temperature in midsummer samplings, the long-term warming treatment effects on standardized emissions mainly appeared as changes in the compound structure of BVOC blends and varied with compounds and sampling times. Our results suggest that the effects of climate warming on the total quantity of BVOC emissions will in Subarctic ecosystems be, over and above the instant temperature effects, mediated through changes in insect herbivore pressure rather than plant growth. If insect herbivore numbers will increase as predicted under climate warming, our results forecast herbivory-induced increases in the quantity of Subarctic BVOC emissions. Graphic Abstract


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1070
Author(s):  
Csaba Béla Eötvös ◽  
Anikó Hirka ◽  
László Gimesi ◽  
Gábor L. Lövei ◽  
Csaba Gáspár ◽  
...  

Numerous recent studies report an alarming decrease in diversity, biomass, or abundance of arthropods in various habitats. Given that they are important food for other organisms, the ecological consequences of such a decline could be severe. We used data from the Hungarian Forestry Light Trap Network to examine whether the spring caterpillar biomass showed any long term (23–58 years) declining trend in oak-dominated forests. Light trap data for 43 selected macrolepidopteran species (suitable bird food in the larval stage) from six different locations were used for the estimation of the total available caterpillar biomass. Time series analyses showed strong year-to-year fluctuations, and over all locations and time windows there was an increasing rather than decreasing trend. The increase found at some locations may suggest increasing herbivore pressure and negative impacts on forest health. We conclude that foliage-feeding macrolepidopteran species with spring-developing larvae did not show a drastic decrease in recent decades, and food availability in the long term will not negatively influence the breeding success of birds in such forests.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1085
Author(s):  
Anderson Melo Gaia ◽  
Lydia Fumiko Yamaguchi ◽  
Camilo Guerrero-Perilla ◽  
Massuo Jorge Kato

The chemical composition of seedlings and adult plants of several Piper species were analyzed by 1H NMR spectroscopy combined with principal component analysis (PCA) and HPLC-DAD, HPLC-HRESIMS and GC-MS data. The chromatographic profile of crude extracts from leaves of Piper species showed remarkable differences between seedlings and adult plants. Adult leaves of P. regnellii accumulate dihydrobenzofuran neolignans, P. solmsianum contain tetrahydrofuran lignans, and prenylated benzoic acids are found in adult leaves of P. hemmendorffii and P. caldense. Seedlings produced an entirely different collection of compounds. Piper gaudichaudianum and P. solmsianum seedlings contain the phenylpropanoid dillapiole. Piper regnellii and P. hemmendorffii produce another phenylpropanoid, apiol, while isoasarone is found in P. caldense. Piper richadiaefolium and P. permucronatum contain dibenzylbutyrolactones lignans or flavonoids in adult leaves. Seedlings of P. richardiaefolium produce multiple amides, while P. permucronatum seedlings contain a new long chain ester. Piper tuberculatum, P. reticulatum and P. amalago produce amides, and their chemistry changes less during ontogeny. The chemical variation we documented opens questions about changes in herbivore pressure across ontogeny.


2020 ◽  
Vol 73 (5) ◽  
pp. 636-641
Author(s):  
Antoine Limpens ◽  
Emmanuel Serrano ◽  
Leidy Rivera-Sánchez ◽  
Jordi Bartolomé ◽  
Elena Baraza

2020 ◽  
Vol 472 ◽  
pp. 118221
Author(s):  
Fiona Milne-Rostkowska ◽  
Jan Holeksa ◽  
Michał Bogdziewicz ◽  
Łukasz Piechnik ◽  
Barbara Seget ◽  
...  
Keyword(s):  

Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 638
Author(s):  
Tao Li ◽  
Kristen Grauer-Gray ◽  
Jarmo K. Holopainen ◽  
James D. Blande

Hybrid aspen (Populus tremula × tremuloides Michx.) is a fast-growing tree species used for short-rotation forestry in northern latitudes. Aspen species have a rich herbivore fauna, including defoliating leaf beetles that induce emissions of volatile organic compounds (VOCs) when feeding on aspen leaves. We investigated the differential induction of VOCs by male and female Phratora laticollis leaf beetles feeding on hybrid aspen and the differences in the orientation of beetles in response to gender-specific induced VOCs. The hypotheses for the study were (1) the VOCs in the headspace of plants infested with beetles of the two genders individually and in mixed aggregates would vary subtly, and (2) foraging adult beetles would be able to detect differences in VOC blends and use them to fine-tune their orientation choices. In Y-tube bioassays, both females and males preferred VOCs from leaves damaged by one gender (females or males) over undamaged leaves. However, if leaves were damaged by a two-gender population, neither females nor males indicated a preference over volatiles of undamaged leaves. Leaves damaged by both beetle genders simultaneously had significantly increased green leaf volatile (GLV), benzenoid and homoterpene emissions compared to undamaged leaves. Emissions of these compounds possibly indicate higher herbivore pressure and a higher risk of attack by parasitoids and predators and could thus be the cause of the lack of beetle preference. Our findings provide new basic information on gender-based host plant selection by herbivores and may be helpful in the development of sustainable biogenic VOC-based herbivore-control methods for intensive short-rotation hybrid aspen production.


2020 ◽  
Author(s):  
Zoe Bont ◽  
Tobias Züst ◽  
Meret Huber ◽  
Matthias Erb

AbstractPlants can adapt to changing environments by adjusting the production and maintenance of diverse sets of bioactive secondary metabolites. To date, the impact of past climatic conditions relative to other factors such as soil abiotic factors and herbivore pressure on the evolution of plant secondary metabolites is poorly understood, especially for plant roots.We explored associations between root latex secondary metabolites in 63 Taraxacum officinale populations across Switzerland and past climatic conditions, soil abiotic parameters, and root herbivore pressure. To assess the contribution of environmental effects, root secondary metabolites were measured in F0 plants in nature and F2 plants under controlled greenhouse conditions.Concentrations of root latex secondary metabolites were most strongly associated with past climatic conditions, while current soil abiotic factors or root herbivore pressure did not show a clear association with root latex chemistry. Results were identical for natural and controlled conditions, suggesting heritable trait variation rather than environmental plasticity as underlying factor.Synthesis. We conclude that climatic conditions likely play a major role in the evolution of root secondary metabolites. Direct abiotic effects are likely underlying this pattern, hinting at a novel role of root latex metabolites the tolerance of abiotic stress.


2020 ◽  
Vol 32 ◽  
Author(s):  
Roberta Liberato Pagni ◽  
Patrícia Bortoletto de Falco ◽  
André Cordeiro Alves dos Santos

Abstract: Aim Cylindrospermopsis raciborskii (Woloszynska) Seenayya and Subba Raju, also called Raphidiopsis raciborskii, is a diazotrophic and filamentous cyanobacterium with terminal heterocytes, belonging to the order Nostocales. It has been the focus of several studies due to its toxicity and wide geographic distribution. Methods To understand its autecology and to identify the key factors that control its dominance, the present review discusses, based on recent publications, whether the expansion of this species is a result of a high metabolic plasticity or the existence of distinct ecotypes. Results Among the factors influencing C. raciborskii growth are its ability to survive in wide temperature, light intensity and pH ranges; to dominate in both stratified and mixed environments; to tolerate oligohaline conditions; to produce and secrete allelopathic substances; suffer little herbivore pressure; and although associated with a eutrophic environment, to tolerate low concentration of phosphorus and nitrogen with a high affinity for ammonia. Conclusions Due to these differences in the environmental conditions of growth and development found in various studies, we suggest the existence of different ecotypes that will predominate under specific environmental conditions as the most appropriate hypothesis.


2019 ◽  
Vol 125 (6) ◽  
pp. 881-890 ◽  
Author(s):  
Xoaquín Moreira ◽  
Luis Abdala-Roberts ◽  
Hans Henrik Bruun ◽  
Felisa Covelo ◽  
Pieter De Frenne ◽  
...  

Abstract Background and Aims Classic theory on geographical gradients in plant–herbivore interactions assumes that herbivore pressure and plant defences increase towards warmer and more stable climates found at lower latitudes. However, the generality of these expectations has been recently called into question by conflicting empirical evidence. One possible explanation for this ambiguity is that most studies have reported on patterns of either herbivory or plant defences whereas few have measured both, thus preventing a full understanding of the implications of observed patterns for plant–herbivore interactions. In addition, studies have typically not measured climatic factors affecting plant–herbivore interactions, despite their expected influence on plant and herbivore traits. Methods Here we tested for latitudinal variation in insect seed predation and seed traits putatively associated with insect attack across 36 Quercus robur populations distributed along a 20° latitudinal gradient. We then further investigated the associations between climatic factors, seed traits and seed predation to test for climate-based mechanisms of latitudinal variation in seed predation. Key Results We found strong but contrasting latitudinal clines in seed predation and seed traits, whereby seed predation increased whereas seed phenolics and phosphorus decreased towards lower latitudes. We also found a strong direct association between temperature and seed predation, with the latter increasing towards warmer climates. In addition, temperature was negatively associated with seed traits, with populations at warmer sites having lower levels of total phenolics and phosphorus. In turn, these negative associations between temperature and seed traits led to a positive indirect association between temperature and seed predation. Conclusions These results help unravel how plant–herbivore interactions play out along latitudinal gradients and expose the role of climate in driving these outcomes through its dual effects on plant defences and herbivores. Accordingly, this emphasizes the need to account for abiotic variation while testing concurrently for latitudinal variation in plant traits and herbivore pressure.


Sign in / Sign up

Export Citation Format

Share Document