scholarly journals Local Applications of Myostatin-siRNA with Atelocollagen Increase Skeletal Muscle Mass and Recovery of Muscle Function

PLoS ONE ◽  
2013 ◽  
Vol 8 (5) ◽  
pp. e64719 ◽  
Author(s):  
Emi Kawakami ◽  
Nobuhiko Kawai ◽  
Nao Kinouchi ◽  
Hiroyo Mori ◽  
Yutaka Ohsawa ◽  
...  
2018 ◽  
pp. 1-3
Author(s):  
B.C. Clark

Sarcopenia was originally conceptualized as the age-related loss of skeletal muscle mass. Over the ensuing decades, the conceptual definition of sarcopenia has changed to represent a condition in older adults that is characterized by declining muscle mass and function, with “function” most commonly conceived as muscle weakness and/or impaired physical performance (e.g., slow gait speed). Findings over the past 15-years, however, have demonstrated that changes in grip and leg extensor strength are not primarily due to muscle atrophy per se, and that to a large extent, are reflective of declines in the integrity of the nervous system. This article briefly summarizes findings relating to the complex neuromuscular mechanisms that contribute to reductions in muscle function associated with advancing age, and the implications of these findings on the development of effective therapies.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e15633-e15633
Author(s):  
Matthew Peloquin ◽  
Brianna LaCarubba ◽  
Stephanie Joaqium ◽  
Gregory Weber ◽  
John Stansfield ◽  
...  

e15633 Background: Almost half of cancer deaths are attributed to cancers most frequently associated with cachexia. Cachexia is a complex metabolic disease characterized by anorexia and unintentional weight loss. Skeletal muscle depletion has been recognized as a key feature of the disease, however muscle anabolic therapies have not been successful, suggesting that treatments that target multiple aspects of the disease will be most effective. Growth differentiation factor 15 (GDF-15) is a cytokine that induces anorexia and weight loss and is associated with cachexia in cancer patients. In preclinical cancer cachexia models, GDF-15 inhibition is sufficient to normalize food intake and body weight, including skeletal muscle mass. However, it remains to be determined whether the increased skeletal muscle mass also results in restoration of muscle function. Therefore, we examined the effect of GDF-15 inhibition on muscle mass and function in mouse models of cancer cachexia in comparison with myostatin inhibition, an established muscle anabolic pathway. Methods: Cachectic mouse tumor models were established with subcutaneous implantation of tumor cell lines reported to be GDF-15-dependent; mouse renal cell carcinoma (RENCA) and human ovarian cancer (TOV-21G) cell lines. Mice were treated with anti-GDF-15 (mAB2) or anti-myostatin (RK35) monoclonal antibodies and skeletal muscle function was assessed in vivo via maximum force, maximum rate of contraction and half relax time. In the RENCA tumor model, GDF-15 inhibition fully restored body weight and skeletal muscle mass whereas myostatin inhibition showed only a modest effect. Results: Consistent with the muscle mass improvement, GDF-15 inhibition dramatically increased functional muscle endpoints compared to the partial effect of myostatin inhibition. Interestingly, in the TOV-21G tumor model GDF-15 inhibition only partially restored body weight, however skeletal muscle mass and muscle function were completely normalized. Consistent with the functional assessment, GDF-15 inhibition in the RENCA tumor model decreased the expression of several catabolic genes (i.e. Trim63, Fbxo32, Myh7 and Myh2). The GDF-15 effect is likely to be secondary to the reversal of anorexia since wildtype mice pair-fed to Fc-GDF-15-treated mice demonstrated equivalent muscle mass loss. Conclusions: Taken together these data suggest that GDF-15 inhibition holds potential as an effective therapeutic approach to alleviate multiple aspects of cachexia.


Author(s):  
Abeline Kapuczinski ◽  
Muhammad S. Soyfoo ◽  
Sandra De Breucker ◽  
Joëlle Margaux

AbstractFibromyalgia is a chronic disorder characterized by persistent widespread musculoskeletal pain. Patients with fibromyalgia have reduced physical activity and increased sedentary rate. The age-associated reduction of skeletal muscle mass and function is called sarcopenia. The European Working Group on Sarcopenia in Older People developed a practical clinical definition and consensus diagnostic criteria for sarcopenia. Loss of muscle function is common in fibromyalgia and in the elderly. The goal of this study is to determine whether the reduction of muscle function in fibromyalgia is related to sarcopenia according to the European Working Group on Sarcopenia in Older People criteria. Forty-five patients with fibromyalgia and thirty-nine healthy control female subjects were included. All the participants were assessed by Fibromyalgia Impact Questionnaire and SARC-F questionnaire. Muscle mass was evaluated by bioimpedance analysis, muscle strength by handgrip strength test and physical performance with the Short Physical Performance Battery. Fibromyalgia Impact Questionnaire and SARC-F scores were statistically significantly higher in the fibromyalgia group than in the control group, showing severe disease and a higher risk of sarcopenia in the fibromyalgia group (p < 0.001). Muscle strength and physical performance were statistically significantly lower in the group with fibromyalgia than in the control group (p < 0.001). There was no statistical difference between fibromyalgia and control groups regarding skeletal muscle mass (p = 0.263). Our study demonstrated a significant reduction in muscle function in fibromyalgia patients without any loss of muscle mass. Loss of muscle function without decrease in muscle mass is called dynapenia.


2014 ◽  
Vol 17 (3) ◽  
pp. 413
Author(s):  
J. Kitagawa ◽  
T. Tachiki ◽  
N. Takahira ◽  
M. Iki ◽  
J. Tamaki ◽  
...  

2019 ◽  
Vol 51 (Supplement) ◽  
pp. 581
Author(s):  
Olivia E. Jones ◽  
Daniel E. Elston ◽  
Bradley S. Fleenor ◽  
Matthew P. Harber

2021 ◽  
Vol 22 (18) ◽  
pp. 10023
Author(s):  
Kippeum Lee ◽  
Jisoo Kim ◽  
Soo-Dong Park ◽  
Jae-Jung Shim ◽  
Jung-Lyoul Lee

Sarcopenia is a loss of muscle mass and function in elderly people and can lead to physical frailty and fall-related injuries. Sarcopenia is an inevitable event of the aging process that substantially impacts a person’s quality of life. Recent studies to improve muscle function through the intake of various functional food materials are attracting attention. However, it is not yet known whether probiotics can improve muscle mass and muscle strength and affect physical performance. Lactobacillus plantarum HY7715 (HY7715) is a lactic acid bacteria isolated from kimchi. The present research shows that L. plantarum HY7715 increases physical performance and skeletal muscle mass in 80-week-old aged Balb/c male mice. HY7715 not only induces myoblast differentiation and mitochondrial biogenesis but also inhibits the sarcopenic process in skeletal muscle. In addition, HY7715 recovers the microbiome composition and beta-diversity shift. Therefore, HY7715 has promise as a functional probiotic supplement to improve the degeneration of muscle function that is associated with aging.


Sign in / Sign up

Export Citation Format

Share Document