scholarly journals Role of DNA Methylation in Cell Cycle Arrest Induced by Cr (VI) in Two Cell Lines

PLoS ONE ◽  
2013 ◽  
Vol 8 (8) ◽  
pp. e71031 ◽  
Author(s):  
Jianlin Lou ◽  
Yu Wang ◽  
Chunji Yao ◽  
Lingzhi Jin ◽  
Xiuzhi Wang ◽  
...  
RSC Advances ◽  
2017 ◽  
Vol 7 (34) ◽  
pp. 21342-21351 ◽  
Author(s):  
Fei Long ◽  
Chengyong Dong ◽  
Keqiu Jiang ◽  
Yakun Xu ◽  
Xinming Chi ◽  
...  

Proposed model elucidating the role of MT in regulating the proliferation of hepatocellular carcinoma (HCC) cells treated with sorafenib.


2019 ◽  
Vol 116 (3) ◽  
pp. 76a
Author(s):  
Manasvita Vashisth ◽  
Sangkyun Cho ◽  
Dennis Discher

2020 ◽  
Vol 3 (Supplement_1) ◽  
pp. i6-i7
Author(s):  
Alişan Kayabölen ◽  
Gizem Nur Sahin ◽  
Fidan Seker ◽  
Ahmet Cingöz ◽  
Bekir Isik ◽  
...  

Abstract Mutations in IDH1 and IDH2 genes are common in low grade gliomas and secondary GBM and are known to cause a distinct epigenetic landscape in these tumors. To interrogate the epigenetic vulnerabilities of IDH-mutant gliomas, we performed a chemical screen with inhibitors of chromatin modifiers and identified 5-azacytidine, Chaetocin, GSK-J4 and Belinostat as potent agents against primary IDH1-mutant cell lines. Testing the combinatorial efficacy of these agents, we demonstrated GSK-J4 and Belinostat combination as a very effective treatment for the IDH1-mutant glioma cells. Engineering established cell lines to ectopically express IDH1R132H, we showed that IDH1R132H cells adopted a different transcriptome with changes in stress-related pathways that were reversible with the mutant IDH1 inhibitor, GSK864. The combination of GSK-J4 and Belinostat was highly effective on IDH1R132H cells, but not on wt glioma cells or nonmalignant fibroblasts and astrocytes. The cell death induced by GSK-J4 and Belinostat combination involved the induction of cell cycle arrest and apoptosis. RNA sequencing analyses revealed activation of inflammatory and unfolded protein response pathways in IDH1-mutant cells upon treatment with GSK-J4 and Belinostat conferring increased stress to glioma cells. Specifically, GSK-J4 induced ATF4-mediated integrated stress response and Belinostat induced cell cycle arrest in primary IDH1-mutant glioma cells; which were accompanied by DDIT3/CHOP-dependent upregulation of apoptosis. Moreover, to dissect out the responsible target histone demethylase, we undertook genetic approach and demonstrated that CRISPR/Cas9 mediated ablation of both KDM6A and KDM6B genes phenocopied the effects of GSK-J4 in IDH1-mutant cells. Finally, GSK-J4 and Belinostat combination significantly decreased tumor growth and increased survival in an orthotopic model in mice. Together, these results suggest a potential combination epigenetic therapy against IDH1-mutant gliomas.


1996 ◽  
Vol 74 (5) ◽  
pp. 698-703 ◽  
Author(s):  
KJ Williams ◽  
J Heighway ◽  
JM Birch ◽  
JD Norton ◽  
D Scott

Author(s):  
Sofia Ferreira-Gonzalez ◽  
Daniel Rodrigo-Torres ◽  
Victoria L. Gadd ◽  
Stuart J. Forbes

AbstractCellular senescence is an irreversible cell cycle arrest implemented by the cell as a result of stressful insults. Characterized by phenotypic alterations, including secretome changes and genomic instability, senescence is capable of exerting both detrimental and beneficial processes. Accumulating evidence has shown that cellular senescence plays a relevant role in the occurrence and development of liver disease, as a mechanism to contain damage and promote regeneration, but also characterizing the onset and correlating with the extent of damage. The evidence of senescent mechanisms acting on the cell populations of the liver will be described including the role of markers to detect cellular senescence. Overall, this review intends to summarize the role of senescence in liver homeostasis, injury, disease, and regeneration.


2004 ◽  
Vol 37 (4) ◽  
pp. 871-880 ◽  
Author(s):  
Hyo-Soo Kim ◽  
Hyun-Jai Cho ◽  
Hyun-Ju Cho ◽  
Sun-Jung Park ◽  
Kyung-Woo Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document