scholarly journals A Comparison of Supervised Machine Learning Algorithms and Feature Vectors for MS Lesion Segmentation Using Multimodal Structural MRI

PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e95753 ◽  
Author(s):  
Elizabeth M. Sweeney ◽  
Joshua T. Vogelstein ◽  
Jennifer L. Cuzzocreo ◽  
Peter A. Calabresi ◽  
Daniel S. Reich ◽  
...  
Author(s):  
M. M. Ata ◽  
K. M. Elgamily ◽  
M. A. Mohamed

The presented paper proposes an algorithm for palmprint recognition using seven different machine learning algorithms. First of all, we have proposed a region of interest (ROI) extraction methodology which is a two key points technique. Secondly, we have performed some image enhancement techniques such as edge detection and morphological operations in order to make the ROI image more suitable for the Hough transform. In addition, we have applied the Hough transform in order to extract all the possible principle lines on the ROI images. We have extracted the most salient morphological features of those lines; slope and length. Furthermore, we have applied the invariant moments algorithm in order to produce 7 appropriate hues of interest. Finally, after performing a complete hybrid feature vectors, we have applied different machine learning algorithms in order to recognize palmprints effectively. Recognition accuracy have been tested by calculating precision, sensitivity, specificity, accuracy, dice, Jaccard coefficients, correlation coefficients, and training time. Seven different supervised machine learning algorithms have been implemented and utilized. The effect of forming the proposed hybrid feature vectors between Hough transform and Invariant moment have been utilized and tested. Experimental results show that the feed forward neural network with back propagation has achieved about 99.99% recognition accuracy among all tested machine learning techniques.


2019 ◽  
Author(s):  
Sun Jae Moon ◽  
Jin Seub Hwang ◽  
Rajesh Kana ◽  
John Torous ◽  
Jung Won Kim

BACKGROUND Over the recent years, machine learning algorithms have been more widely and increasingly applied in biomedical fields. In particular, its application has been drawing more attention in the field of psychiatry, for instance, as diagnostic tests/tools for autism spectrum disorder. However, given its complexity and potential clinical implications, there is ongoing need for further research on its accuracy. OBJECTIVE The current study aims to summarize the evidence for the accuracy of use of machine learning algorithms in diagnosing autism spectrum disorder (ASD) through systematic review and meta-analysis. METHODS MEDLINE, Embase, CINAHL Complete (with OpenDissertations), PsyINFO and IEEE Xplore Digital Library databases were searched on November 28th, 2018. Studies, which used a machine learning algorithm partially or fully in classifying ASD from controls and provided accuracy measures, were included in our analysis. Bivariate random effects model was applied to the pooled data in meta-analysis. Subgroup analysis was used to investigate and resolve the source of heterogeneity between studies. True-positive, false-positive, false negative and true-negative values from individual studies were used to calculate the pooled sensitivity and specificity values, draw SROC curves, and obtain area under the curve (AUC) and partial AUC. RESULTS A total of 43 studies were included for the final analysis, of which meta-analysis was performed on 40 studies (53 samples with 12,128 participants). A structural MRI subgroup meta-analysis (12 samples with 1,776 participants) showed the sensitivity at 0.83 (95% CI-0.76 to 0.89), specificity at 0.84 (95% CI -0.74 to 0.91), and AUC/pAUC at 0.90/0.83. An fMRI/deep neural network (DNN) subgroup meta-analysis (five samples with 1,345 participants) showed the sensitivity at 0.69 (95% CI- 0.62 to 0.75), the specificity at 0.66 (95% CI -0.61 to 0.70), and AUC/pAUC at 0.71/0.67. CONCLUSIONS Machine learning algorithms that used structural MRI features in diagnosis of ASD were shown to have accuracy that is similar to currently used diagnostic tools.


2021 ◽  
Vol 1916 (1) ◽  
pp. 012042
Author(s):  
Ranjani Dhanapal ◽  
A AjanRaj ◽  
S Balavinayagapragathish ◽  
J Balaji

2021 ◽  
Vol 11 (15) ◽  
pp. 6728
Author(s):  
Muhammad Asfand Hafeez ◽  
Muhammad Rashid ◽  
Hassan Tariq ◽  
Zain Ul Abideen ◽  
Saud S. Alotaibi ◽  
...  

Classification and regression are the major applications of machine learning algorithms which are widely used to solve problems in numerous domains of engineering and computer science. Different classifiers based on the optimization of the decision tree have been proposed, however, it is still evolving over time. This paper presents a novel and robust classifier based on a decision tree and tabu search algorithms, respectively. In the aim of improving performance, our proposed algorithm constructs multiple decision trees while employing a tabu search algorithm to consistently monitor the leaf and decision nodes in the corresponding decision trees. Additionally, the used tabu search algorithm is responsible to balance the entropy of the corresponding decision trees. For training the model, we used the clinical data of COVID-19 patients to predict whether a patient is suffering. The experimental results were obtained using our proposed classifier based on the built-in sci-kit learn library in Python. The extensive analysis for the performance comparison was presented using Big O and statistical analysis for conventional supervised machine learning algorithms. Moreover, the performance comparison to optimized state-of-the-art classifiers is also presented. The achieved accuracy of 98%, the required execution time of 55.6 ms and the area under receiver operating characteristic (AUROC) for proposed method of 0.95 reveals that the proposed classifier algorithm is convenient for large datasets.


Author(s):  
Charalambos Kyriakou ◽  
Symeon E. Christodoulou ◽  
Loukas Dimitriou

The paper presents a data-driven framework and related field studies on the use of supervised machine learning and smartphone technology for the spatial condition-assessment mapping of roadway pavement surface anomalies. The study explores the use of data, collected by sensors from a smartphone and a vehicle’s onboard diagnostic device while the vehicle is in movement, for the detection of roadway anomalies. The research proposes a low-cost and automated method to obtain up-to-date information on roadway pavement surface anomalies with the use of smartphone technology, artificial neural networks, robust regression analysis, and supervised machine learning algorithms for multiclass problems. The technology for the suggested system is readily available and accurate and can be utilized in pavement monitoring systems and geographical information system applications. Further, the proposed methodology has been field-tested, exhibiting accuracy levels higher than 90%, and it is currently expanded to include larger datasets and a bigger number of common roadway pavement surface defect types. The proposed system is of practical importance since it provides continuous information on roadway pavement surface conditions, which can be valuable for pavement engineers and public safety.


2021 ◽  
pp. 1-12
Author(s):  
Melesio Crespo-Sanchez ◽  
Ivan Lopez-Arevalo ◽  
Edwin Aldana-Bobadilla ◽  
Alejandro Molina-Villegas

In the last few years, text analysis has grown as a keystone in several domains for solving many real-world problems, such as machine translation, spam detection, and question answering, to mention a few. Many of these tasks can be approached by means of machine learning algorithms. Most of these algorithms take as input a transformation of the text in the form of feature vectors containing an abstraction of the content. Most of recent vector representations focus on the semantic component of text, however, we consider that also taking into account the lexical and syntactic components the abstraction of content could be beneficial for learning tasks. In this work, we propose a content spectral-based text representation applicable to machine learning algorithms for text analysis. This representation integrates the spectra from the lexical, syntactic, and semantic components of text producing an abstract image, which can also be treated by both, text and image learning algorithms. These components came from feature vectors of text. For demonstrating the goodness of our proposal, this was tested on text classification and complexity reading score prediction tasks obtaining promising results.


Sign in / Sign up

Export Citation Format

Share Document