scholarly journals A 6K-Deletion Variant of Salmonid Alphavirus Is Non-Viable but Can Be Rescued through RNA Recombination

PLoS ONE ◽  
2014 ◽  
Vol 9 (7) ◽  
pp. e100184 ◽  
Author(s):  
Tz-Chun Guo ◽  
Daniel X. Johansson ◽  
Øyvind Haugland ◽  
Peter Liljeström ◽  
Øystein Evensen
2019 ◽  
Vol 46 (8) ◽  
Author(s):  
Ken Okamura ◽  
Yuko Abe ◽  
Masahiro Hayashi ◽  
Toru Saito ◽  
Kei Nagatani ◽  
...  

2007 ◽  
Vol 88 (12) ◽  
pp. 3347-3359 ◽  
Author(s):  
Rowena A. Bull ◽  
Mark M. Tanaka ◽  
Peter A. White

RNA recombination is a significant driving force in viral evolution. Increased awareness of recombination within the genus Norovirus of the family Calicivirus has led to a rise in the identification of norovirus (NoV) recombinants and they are now reported at high frequency. Currently, there is no classification system for recombinant NoVs and a widely accepted recombinant genotyping system is still needed. Consequently, there is duplication in reporting of novel recombinants. This has led to difficulties in defining the number and types of recombinants in circulation. In this study, 120 NoV nucleotide sequences were compiled from the current GenBank database and published literature. NoV recombinants and their recombination breakpoints were identified using three methods: phylogenetic analysis, SimPlot analysis and the maximum χ 2 method. A total of 20 NoV recombinant types were identified in circulation worldwide. The recombination point is the ORF1/2 overlap in all isolates except one, which demonstrated a double recombination event within the polymerase region.


1992 ◽  
Vol 20 (13) ◽  
pp. 3375-3381 ◽  
Author(s):  
Robbert G. van der Most ◽  
Leo Heijnen ◽  
Willy J.M. Spaan ◽  
Raoul J. de Groot

2009 ◽  
Vol 10 (1) ◽  
Author(s):  
Rowena J Keyser ◽  
Lize van der Merwe ◽  
Mauritz Venter ◽  
Craig Kinnear ◽  
Louise Warnich ◽  
...  
Keyword(s):  

2011 ◽  
Vol 77 (1) ◽  
pp. 75-79 ◽  
Author(s):  
Tamara Dworeck ◽  
Anne-Kathrin Petri ◽  
Noor Muhammad ◽  
Marco Fioroni ◽  
Ulrich Schwaneberg

2005 ◽  
Vol 79 (20) ◽  
pp. 12742-12751 ◽  
Author(s):  
Cornelis A. M. de Haan ◽  
Bert Jan Haijema ◽  
David Boss ◽  
Frank W. H. Heuts ◽  
Peter J. M. Rottier

ABSTRACT Coronaviruses are enveloped, positive-stranded RNA viruses considered to be promising vectors for vaccine development, as (i) genes can be deleted, resulting in attenuated viruses; (ii) their tropism can be modified by manipulation of their spike protein; and (iii) heterologous genes can be expressed by simply inserting them with appropriate coronaviral transcription signals into the genome. For any live vector, genetic stability is an essential requirement. However, little is known about the genetic stability of recombinant coronaviruses expressing foreign genes. In this study, the Renilla and the firefly luciferase genes were systematically analyzed for their stability after insertion at various genomic positions in the group 1 coronavirus feline infectious peritonitis virus and in the group 2 coronavirus mouse hepatitis virus. It appeared that the two genes exhibit intrinsic differences, the Renilla gene consistently being maintained more stably than the firefly gene. This difference was not caused by genome size restrictions, by different effects of the encoded proteins, or by different consequences of the synthesis of the additional subgenomic mRNAs. The loss of expression of the firefly luciferase was found to result from various, often large deletions of the gene, probably due to RNA recombination. The extent of this process appeared to depend strongly on the coronaviral genomic background, the luciferase gene being much more stable in the feline than in the mouse coronavirus genome. It also depended significantly on the particular genomic location at which the gene was inserted. The data indicate that foreign sequences are more stably maintained when replacing nonessential coronaviral genes.


2004 ◽  
Vol 78 (6) ◽  
pp. 2948-2955 ◽  
Author(s):  
M. Steven Oberste ◽  
Silvia Peñaranda ◽  
Mark A. Pallansch

ABSTRACT RNA recombination has been shown to occur during circulation of enteroviruses, but most studies have focused on poliovirus. To examine the role of recombination in the evolution of the coxsackie B viruses (CVB), we determined the partial sequences of four genomic intervals for multiple clinical isolates of each of the six CVB serotypes isolated from 1970 to 1996. The regions sequenced were the 5′-nontranslated region (5′-NTR) (350 nucleotides [nt]), capsid (VP4-VP2, 416 nt, and VP1, ∼320 nt), and polymerase (3D, 491 nt). Phylogenetic trees were constructed for each genome region, using the clinical isolate sequences and those of the prototype strains of all 65 enterovirus serotypes. The partial VP1 sequences of each CVB serotype were monophyletic with respect to serotype, as were the VP4-VP2 sequences, in agreement with previously published studies. In some cases, however, incongruent tree topologies suggested that intraserotypic recombination had occurred between the sequenced portions of VP2 and VP1. Outside the capsid region, however, isolates of the same serotype were not monophyletic, indicating that recombination had occurred between the 5′-NTR and capsid, the capsid and 3D, or both. Almost all clinical isolates were recombinant relative to the prototype strain of the same serotype. All of the recombination partners appear to be members of human enterovirus species B. These results suggest that recombination is a frequent event during enterovirus evolution but that there are genetic restrictions that may influence recombinational compatibility.


Sign in / Sign up

Export Citation Format

Share Document