scholarly journals Regulation of Extracellular Matrix Organization by BMP Signaling in Caenorhabditis elegans

PLoS ONE ◽  
2014 ◽  
Vol 9 (7) ◽  
pp. e101929 ◽  
Author(s):  
Robbie D. Schultz ◽  
Emily E. Bennett ◽  
E. Ann Ellis ◽  
Tina L. Gumienny
2020 ◽  
Vol 31 (8) ◽  
pp. 825-832 ◽  
Author(s):  
Uday Madaan ◽  
Lionel Faure ◽  
Albar Chowdhury ◽  
Shahrear Ahmed ◽  
Emma J. Ciccarelli ◽  
...  

Transforming growth factor beta (TGF-β) and related signals can be regulated by the extracellular matrix (ECM). We identify a novel contact-independent regulation of DBL-1 TGF-β/BMP–related signaling by collagens in Caenorhabditis elegans. These collagens are transcriptional targets of the pathway, indicating reciprocal interactions between DBL-1 signaling and the ECM.


Genetics ◽  
2017 ◽  
pp. genetics.300207.2017 ◽  
Author(s):  
Rachel Forman-Rubinsky ◽  
Jennifer D. Cohen ◽  
Meera V. Sundaram

2017 ◽  
Vol 45 (1) ◽  
pp. 173-181 ◽  
Author(s):  
Georg Sedlmeier ◽  
Jonathan P. Sleeman

Given its importance in development and homeostasis, bone morphogenetic protein (BMP) signaling is tightly regulated at the extra- and intracellular level. The extracellular matrix (ECM) was initially thought to act as a passive mechanical barrier that sequesters BMPs. However, a new understanding about how the ECM plays an instructive role in regulating BMP signaling is emerging. In this mini-review, we discuss various ways in which the biochemical and physical properties of the ECM regulate BMP signaling.


2013 ◽  
Vol 383 (1) ◽  
pp. 39-51 ◽  
Author(s):  
Michael R. Dohn ◽  
Nathan A. Mundell ◽  
Leah M. Sawyer ◽  
Julie A. Dunlap ◽  
Jason R. Jessen

2020 ◽  
Author(s):  
Zhengzhong Gu ◽  
Xiaohan Cui ◽  
Xudong Wang

Abstract Background: Prognostic prediction models have been developed to detect new biomarkers of gastric cancer (GC). The identification of new biomarkers could provide theoretical foundations for the application of molecular targeted therapy in advanced GC. The aim of this study was to construct a prognostic prediction model for stomach adenocarcinoma (STAD) based on The Cancer Genome Atlas (TCGA) database. Methods: First, we used the "limma" package to screen differentially expressed genes (DEGs) based on TCGA database. Gene ontology (GO) analysis was performed using the "ClusterProfiler" package. The interactions between proteins and the relationships between differentially expressed genes and clinical features were analyzed by protein-protein interaction (PPI) network analysis and weighted gene coexpression network analysis (WGCNA), respectively. Then, gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were used to identify differentially enriched pathways. The GenVisR package and CIBERSORT were used to identify mutations and assess immune infiltration. Finally, the expression of COL3A1 in STAD tissues was verified by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting.Results: Six differentially expressed genes were screened out, namely, COL3A1, ADAMTS12, BGN, FNDC1, AEBP1 and HTRA3. The enrichment results showed that differentially expressed genes were involved in multiple pathways in STAD, such as those related to the extracellular matrix, extracellular structure organization, and extracellular matrix organization. The differentially expressed genes were related to immune infiltration via the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathways. The western blotting and RT-qPCR results suggested that COL3A1 was overexpressed in STAD tissues compared with normal tissues.Conclusion: COL3A1, ADAMTS12, BGN, FNDC1, AEBP1 and HTRA3 could play important roles in the tumorigenesis and progression of STAD via various pathways, including those involving the extracellular matrix, extracellular structure organization, and extracellular matrix organization. COL3A1, ADAMTS12, BGN, FNDC1, AEBP1, and HTRA3 act as oncogenes in most cancers and may be biomarkers. Additionally, the identification of COL3A1 as a candidate biomarker provides a direction for further research on the role of tumor immunity in gastric cancer.


2019 ◽  
Vol 20 (7) ◽  
pp. 1716 ◽  
Author(s):  
Gauri Tendulkar ◽  
Sabrina Ehnert ◽  
Vrinda Sreekumar ◽  
Tao Chen ◽  
Hans-Peter Kaps ◽  
...  

Musculoskeletal disorders, such as osteoarthritis and intervertebral disc degeneration are causes of morbidity, which concomitantly burdens the health and social care systems worldwide, with massive costs. Link N peptide has recently been described as a novel anabolic stimulator for intervertebral disc repair. In this study, we analyzed the influence on anabolic response, by delivering synthetic Link N encoding mRNA into primary human chondrocytes and mesenchymal stromal cells (SCP1 cells), Furthermore, both cell types were seeded on knitted titanium scaffolds, and the influence of Link N peptide mRNA for possible tissue engineering applications was investigated. Synthetic modified Link N mRNA was efficiently delivered into both cell types and cell transfection resulted in an enhanced expression of aggrecan, Sox 9, and type II collagen with a decreased expression of type X collagen. Interestingly, despite increased expression of BMP2 and BMP7, BMP signaling was repressed and TGFβ signaling was boosted by Link N transfection in mesenchymal stromal cells, suggesting possible regulatory mechanisms. Thus, the exogenous delivery of Link N peptide mRNA into cells augmented an anabolic response and thereby increased extracellular matrix synthesis. Considering these findings, we suppose that the cultivation of cells on knitted titanium scaffolds and the exogenous delivery of Link N peptide mRNA into cells could mechanically support the stability of tissue-engineered constructs and improve the synthesis of extracellular matrix by seeded cells. This method can provide a potent strategy for articular cartilage and intervertebral disc regeneration.


Sign in / Sign up

Export Citation Format

Share Document