scholarly journals Tomato ABSCISIC ACID STRESS RIPENING (ASR) Gene Family Revisited

PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e107117 ◽  
Author(s):  
Ido Golan ◽  
Pia Guadalupe Dominguez ◽  
Zvia Konrad ◽  
Doron Shkolnik-Inbar ◽  
Fernando Carrari ◽  
...  
2020 ◽  
Vol 53 (1) ◽  
Author(s):  
Huawei Li ◽  
Haiying Guan ◽  
Qicui Zhuo ◽  
Zongshuai Wang ◽  
Shengdong Li ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
pp. 4554
Author(s):  
Ruoyi Lin ◽  
Tao Zou ◽  
Qiming Mei ◽  
Zhengfeng Wang ◽  
Mei Zhang ◽  
...  

Canavalia rosea (bay bean), distributing in coastal areas or islands in tropical and subtropical regions, is an extremophile halophyte with good adaptability to seawater and drought. Late embryogenesis abundant (LEA) proteins typically accumulate in response to various abiotic stresses, including dehydration, salinity, high temperature, and cold, or during the late stage of seed development. Abscisic acid-, stress-, and ripening-induced (ASR) genes are stress and developmentally regulated plant-specific genes. In this study, we reported the first comprehensive survey of the LEA and ASR gene superfamily in C. rosea. A total of 84 CrLEAs and three CrASRs were identified in C. rosea and classified into nine groups. All CrLEAs and CrASRs harbored the conserved motif for their family proteins. Our results revealed that the CrLEA genes were widely distributed in different chromosomes, and all of the CrLEA/CrASR genes showed wide expression features in different tissues in C. rosea plants. Additionally, we introduced 10 genes from different groups into yeast to assess the functions of the CrLEAs/CrASRs. These results contribute to our understanding of LEA/ASR genes from halophytes and provide robust candidate genes for functional investigations in plant species adapted to extreme environments.


1998 ◽  
Vol 258 (1-2) ◽  
pp. 1-8 ◽  
Author(s):  
M. Rossi ◽  
F. Carrari ◽  
J. L. Cabrera-Ponce ◽  
C. Vázquez-Rovere ◽  
L. Herrera-Estrella ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhiwei Chen ◽  
Longhua Zhou ◽  
Panpan Jiang ◽  
Ruiju Lu ◽  
Nigel G. Halford ◽  
...  

Abstract Background Sucrose nonfermenting-1 (SNF1)-related protein kinases (SnRKs) play important roles in regulating metabolism and stress responses in plants, providing a conduit for crosstalk between metabolic and stress signalling, in some cases involving the stress hormone, abscisic acid (ABA). The burgeoning and divergence of the plant gene family has led to the evolution of three subfamilies, SnRK1, SnRK2 and SnRK3, of which SnRK2 and SnRK3 are unique to plants. Therefore, the study of SnRKs in crops may lead to the development of strategies for breeding crop varieties that are more resilient under stress conditions. In the present study, we describe the SnRK gene family of barley (Hordeum vulgare), the widespread cultivation of which can be attributed to its good adaptation to different environments. Results The barley HvSnRK gene family was elucidated in its entirety from publicly-available genome data and found to comprise 50 genes. Phylogenetic analyses assigned six of the genes to the HvSnRK1 subfamily, 10 to HvSnRK2 and 34 to HvSnRK3. The search was validated by applying it to Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) genome data, identifying 50 SnRK genes in rice (four OsSnRK1, 11 OsSnRK2 and 35 OsSnRK3) and 39 in Arabidopsis (three AtSnRK1, 10 AtSnRK2 and 26 AtSnRK3). Specific motifs were identified in the encoded barley proteins, and multiple putative regulatory elements were found in the gene promoters, with light-regulated elements (LRE), ABA response elements (ABRE) and methyl jasmonate response elements (MeJa) the most common. RNA-seq analysis showed that many of the HvSnRK genes responded to ABA, some positively, some negatively and some with complex time-dependent responses. Conclusions The barley HvSnRK gene family is large, comprising 50 members, subdivided into HvSnRK1 (6 members), HvSnRK2 (10 members) and HvSnRK3 (34 members), showing differential positive and negative responses to ABA.


2020 ◽  
Vol 21 (24) ◽  
pp. 9491
Author(s):  
Kang-Ming Jin ◽  
Ren-Ying Zhuo ◽  
Dong Xu ◽  
Yu-Jun Wang ◽  
Hui-Jin Fan ◽  
...  

Expansins, a group of cell wall-loosening proteins, are involved in cell-wall loosening and cell enlargement in a pH-dependent manner. According to previous study, they were involved in plant growth and abiotic stress responses. However, information on the biological function of the expansin gene in moso bamboo is still limited. In this study, we identified a total of 82 expansin genes in moso bamboo, clustered into four subfamilies (α-expansin (EXPA), β-expansin (EXPB), expansin-like A (EXLA) and expansin-like B (EXPB)). Subsequently, the molecular structure, chromosomal location and phylogenetic relationship of the expansin genes of Phyllostachys edulis (PeEXs) were further characterized. A total of 14 pairs of tandem duplication genes and 31 pairs of segmented duplication genes were also identified, which may promote the expansion of the expansin gene family. Promoter analysis found many cis-acting elements related to growth and development and stress response, especially abscisic acid response element (ABRE). Expression pattern revealed that most PeEXs have tissue expression specificity. Meanwhile, the expression of some selected PeEXs was significantly upregulated mostly under abscisic acid (ABA) and polyethylene glycol (PEG) treatment, which implied that these genes actively respond to expression under abiotic stress. This study provided new insights into the structure, evolution and function prediction of the expansin gene family in moso bamboo.


Gene ◽  
2006 ◽  
Vol 378 ◽  
pp. 74-83 ◽  
Author(s):  
Nicolás Frankel ◽  
Fernando Carrari ◽  
Esteban Hasson ◽  
Norberto D. Iusem

Plant Science ◽  
2001 ◽  
Vol 161 (4) ◽  
pp. 739-746 ◽  
Author(s):  
Laura Maskin ◽  
Gustavo E. Gudesblat ◽  
Javier E. Moreno ◽  
Fernando O. Carrari ◽  
Nicolás Frankel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document