scholarly journals Proteomic Analysis of INS-1 Rat Insulinoma Cells: ER Stress Effects and the Protective Role of Exenatide, a GLP-1 Receptor Agonist

PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0120536 ◽  
Author(s):  
Mi-Kyung Kim ◽  
Jin-Hwan Cho ◽  
Jae-Jin Lee ◽  
Moon-Ho Son ◽  
Kong-Joo Lee
2016 ◽  
Vol 53 ◽  
pp. 334-342 ◽  
Author(s):  
Intidhar Ben Salem ◽  
Alexandre Prola ◽  
Manel Boussabbeh ◽  
Arnaud Guilbert ◽  
Hassen Bacha ◽  
...  

2020 ◽  
Vol 65 (3) ◽  
pp. 652-660
Author(s):  
Ibrahim Aly ◽  
Essam H. Ibrahim ◽  
Rabab S. Hamad ◽  
Hoda E. L. Sayed ◽  
Sama M. N. Attiyah ◽  
...  

1992 ◽  
Vol 200 (4) ◽  
pp. 490-494 ◽  
Author(s):  
M. Murakami ◽  
J. Ishizuka ◽  
S. Sumi ◽  
G. A. Nickols ◽  
C. W. Cooper ◽  
...  

2018 ◽  
Vol 1 (1) ◽  
pp. 94-108 ◽  
Author(s):  
Hyoung Yool Lee ◽  
Kyoungwhan Back

Melatonin has diverse roles as a signaling molecule that activates a number of downstream defense systems against various biotic and abiotic stresses in plants. However, there have been no reports regarding a direct protective role of melatonin against endoplasmic reticulum (ER) stress. Here, we report that exogenous melatonin treatment attenuated ER stress damage by preserving ER structure and enhancing secretory protein folding capacity in response to tunicamycin treatment. Further transgenic experiments indicated that melatonin-deficient snat1 mutant was hypersensitive to ER stress, whereas melatonin-proficient SNAT1 overexpression (OE) was tolerant to ER stress, as evidenced by reduced ion leakage and higher transcript levels of ER chaperones, including luminal binding protein (BIP) 2, BIP3, and CNX1, compared to wild-type controls. Moreover, this melatonin-mediated ER stress tolerance was dependent on the bZIP60 transcription factor and mitogen-activated protein kinase. Our data suggest that melatonin is actively involved in maintaining homeostasis of the ER during normal plant growth, and also has a protective effect against many environmental stressors that induce ER stress.


Endocrinology ◽  
1994 ◽  
Vol 134 (3) ◽  
pp. 1006-1010 ◽  
Author(s):  
W L Suarez-Pinzon ◽  
K Strynadka ◽  
R Schulz ◽  
A Rabinovitch

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yohei Kawaguchi ◽  
Daisuke Hagiwara ◽  
Takashi Miyata ◽  
Yuichi Hodai ◽  
Junki Kurimoto ◽  
...  

AbstractThe immunoglobulin heavy chain binding protein (BiP), also referred to as 78-kDa glucose-regulated protein (GRP78), is a pivotal endoplasmic reticulum (ER) chaperone which modulates the unfolded protein response under ER stress. Our previous studies showed that BiP is expressed in arginine vasopressin (AVP) neurons under non-stress conditions and that BiP expression is upregulated in proportion to the increased AVP expression under dehydration. To clarify the role of BiP in AVP neurons, we used a viral approach in combination with shRNA interference for BiP knockdown in mouse AVP neurons. Injection of a recombinant adeno-associated virus equipped with a mouse AVP promoter and BiP shRNA cassette provided specific BiP knockdown in AVP neurons of the supraoptic (SON) and paraventricular nuclei (PVN) in mice. AVP neuron-specific BiP knockdown led to ER stress and AVP neuronal loss in the SON and PVN, resulting in increased urine volume due to lack of AVP secretion. Immunoelectron microscopy of AVP neurons revealed that autophagy was activated through the process of AVP neuronal loss, whereas no obvious features characteristic of apoptosis were observed. Pharmacological inhibition of autophagy by chloroquine exacerbated the AVP neuronal loss due to BiP knockdown, indicating a protective role of autophagy in AVP neurons under ER stress. In summary, our results demonstrate that BiP is essential for the AVP neuron system.


Sign in / Sign up

Export Citation Format

Share Document