scholarly journals Comparative Genomic Analysis of Two Novel Sporadic Shiga Toxin-Producing Escherichia coli O104:H4 Strains Isolated 2011 in Germany

PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0122074 ◽  
Author(s):  
Erhard Tietze ◽  
Piotr Wojciech Dabrowski ◽  
Rita Prager ◽  
Aleksandar Radonic ◽  
Angelika Fruth ◽  
...  
2020 ◽  
Vol 14 (6) ◽  
pp. e0008373 ◽  
Author(s):  
Rodrigo T. Hernandes ◽  
Tracy H. Hazen ◽  
Luís F. dos Santos ◽  
Taylor K. S. Richter ◽  
Jane M. Michalski ◽  
...  

2008 ◽  
Vol 190 (20) ◽  
pp. 6881-6893 ◽  
Author(s):  
David A. Rasko ◽  
M. J. Rosovitz ◽  
Garry S. A. Myers ◽  
Emmanuel F. Mongodin ◽  
W. Florian Fricke ◽  
...  

ABSTRACT Whole-genome sequencing has been skewed toward bacterial pathogens as a consequence of the prioritization of medical and veterinary diseases. However, it is becoming clear that in order to accurately measure genetic variation within and between pathogenic groups, multiple isolates, as well as commensal species, must be sequenced. This study examined the pangenomic content of Escherichia coli. Six distinct E. coli pathovars can be distinguished using molecular or phenotypic markers, but only two of the six pathovars have been subjected to any genome sequencing previously. Thus, this report provides a seminal description of the genomic contents and unique features of three unsequenced pathovars, enterotoxigenic E. coli, enteropathogenic E. coli, and enteroaggregative E. coli. We also determined the first genome sequence of a human commensal E. coli isolate, E. coli HS, which will undoubtedly provide a new baseline from which workers can examine the evolution of pathogenic E. coli. Comparison of 17 E. coli genomes, 8 of which are new, resulted in identification of ∼2,200 genes conserved in all isolates. We were also able to identify genes that were isolate and pathovar specific. Fewer pathovar-specific genes were identified than anticipated, suggesting that each isolate may have independently developed virulence capabilities. Pangenome calculations indicate that E. coli genomic diversity represents an open pangenome model containing a reservoir of more than 13,000 genes, many of which may be uncharacterized but important virulence factors. This comparative study of the species E. coli, while descriptive, should provide the basis for future functional work on this important group of pathogens.


Gut Pathogens ◽  
2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Si-yun Chung ◽  
Taesoo Kwon ◽  
Young-Seok Bak ◽  
Joung Je Park ◽  
Cheorl-Ho Kim ◽  
...  

Author(s):  
Xiaomei Zhang ◽  
Michael Payne ◽  
Sandeep Kaur ◽  
Ruiting Lan

Shiga toxin-producing Escherichia coli (STEC) have more than 470 serotypes. The well-known STEC O157:H7 serotype is a leading cause of STEC infections in humans. However, the incidence of non-O157:H7 STEC serotypes associated with foodborne outbreaks and human infections has increased in recent years. Current detection and serotyping assays are focusing on O157 and top six (“Big six”) non-O157 STEC serogroups. In this study, we performed phylogenetic analysis of nearly 41,000 publicly available STEC genomes representing 460 different STEC serotypes and identified 19 major and 229 minor STEC clusters. STEC cluster-specific gene markers were then identified through comparative genomic analysis. We further identified serotype-specific gene markers for the top 10 most frequent non-O157:H7 STEC serotypes. The cluster or serotype specific gene markers had 99.54% accuracy and more than 97.25% specificity when tested using 38,534 STEC and 14,216 non-STEC E. coli genomes, respectively. In addition, we developed a freely available in silico serotyping pipeline named STECFinder that combined these robust gene markers with established E. coli serotype specific O and H antigen genes and stx genes for accurate identification, cluster determination and serotyping of STEC. STECFinder can assign 99.85% and 99.83% of 38,534 STEC isolates to STEC clusters using assembled genomes and Illumina reads respectively and can simultaneously predict stx subtypes and STEC serotypes. Using shotgun metagenomic sequencing reads of STEC spiked food samples from a published study, we demonstrated that STECFinder can detect the spiked STEC serotypes, accurately. The cluster/serotype-specific gene markers could also be adapted for culture independent typing, facilitating rapid STEC typing. STECFinder is available as an installable package (https://github.com/LanLab/STECFinder) and will be useful for in silico STEC cluster identification and serotyping using genome data.


PLoS ONE ◽  
2016 ◽  
Vol 11 (3) ◽  
pp. e0151673 ◽  
Author(s):  
Krysty D. Munns ◽  
Rahat Zaheer ◽  
Yong Xu ◽  
Kim Stanford ◽  
Chad R. Laing ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document