scholarly journals Differentially Expressed Gene Transcripts Using RNA Sequencing from the Blood of Immunosuppressed Kidney Allograft Recipients

PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0125045 ◽  
Author(s):  
Casey Dorr ◽  
Baolin Wu ◽  
Weihua Guan ◽  
Amutha Muthusamy ◽  
Kinjal Sanghavi ◽  
...  
Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3379
Author(s):  
Laura Patterson Rosa ◽  
Martha F. Mallicote ◽  
Robert J. MacKay ◽  
Samantha A. Brooks

Macrolide drugs are the treatment of choice for Rhodococcus equi infections, despite severe side-effects temporary anhidrosis as a. To better understand the molecular biology leading to macrolide induced anhidrosis, we performed skin biopsies and Quantitative Intradermal Terbutaline Sweat Tests (QITSTs) in six healthy pony-cross foals for three different timepoints during erythromycin administration—pre-treatment (baseline), during anhidrosis and post-recovery. RNA sequencing of biopsies followed by differential gene expression analysis compared both pre and post normal sweating timepoints to the erythromycin induced anhidrosis episode. After Bonferroni correction for multiple testing, 132 gene transcripts were significantly differentially expressed during the anhidrotic timepoint. Gene ontology analysis of the full differentially expressed gene set identified over-represented biological functions for ubiquitination and ion-channel function, both biologically relevant to sweat production. These same mechanisms were previously implicated in heritable equine idiopathic anhidrosis and sweat gland function and their involvement in macrolide-induced temporary anhidrosis warrants further investigation.


Insects ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 308
Author(s):  
Zhijia Huo ◽  
Yating Liu ◽  
Jinjian Yang ◽  
Wen Xie ◽  
Shaoli Wang ◽  
...  

Mating triggers substantial changes in gene expression and leads to subsequent physiological and behavioral modifications. However, postmating transcriptomic changes responding to mating have not yet been fully understood. Here, we carried out RNA sequencing (RNAseq) analysis in the sweet potato whitefly, Bemisia tabaci MED, to identify genes in females in response to mating. We compared mRNA expression in virgin and mated females at 24 h. As a result, 434 differentially expressed gene transcripts (DEGs) were identified between the mated and unmated groups, including 331 up- and 103 down-regulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that many of these DEGs encode binding-related proteins and genes associated with longevity. An RT-qPCR validation study was consistent with our transcriptomic analysis (14/15). Specifically, expression of P450s (Cyp18a1 and Cyp4g68), ubiquitin-protein ligases (UBR5 and RNF123), Hsps (Hsp68 and Hsf), carboxylase (ACC-2), facilitated trehalose transporters (Tret1-2), transcription factor (phtf), and serine-protein kinase (TLK2) were significantly elevated in mated females throughout seven assay days. These combined results offer a glimpe of postmating molecular modifications to facilitate reproduction in B. tabaci females.


2020 ◽  
Vol 26 (29) ◽  
pp. 3619-3630
Author(s):  
Saumya Choudhary ◽  
Dibyabhaba Pradhan ◽  
Noor S. Khan ◽  
Harpreet Singh ◽  
George Thomas ◽  
...  

Background: Psoriasis is a chronic immune mediated skin disorder with global prevalence of 0.2- 11.4%. Despite rare mortality, the severity of the disease could be understood by the accompanying comorbidities, that has even led to psychological problems among several patients. The cause and the disease mechanism still remain elusive. Objective: To identify potential therapeutic targets and affecting pathways for better insight of the disease pathogenesis. Method: The gene expression profile GSE13355 and GSE14905 were retrieved from NCBI, Gene Expression Omnibus database. The GEO profiles were integrated and the DEGs of lesional and non-lesional psoriasis skin were identified using the affy package in R software. The Kyoto Encyclopaedia of Genes and Genomes pathways of the DEGs were analyzed using clusterProfiler. Cytoscape, V3.7.1 was utilized to construct protein interaction network and analyze the interactome map of candidate proteins encoded in DEGs. Functionally relevant clusters were detected through Cytohubba and MCODE. Results: A total of 1013 genes were differentially expressed in lesional skin of which 557 were upregulated and 456 were downregulated. Seven dysregulated genes were extracted in non-lesional skin. The disease gene network of these DEGs revealed 75 newly identified differentially expressed gene that might have a role in development and progression of the disease. GO analysis revealed keratinocyte differentiation and positive regulation of cytokine production to be the most enriched biological process and molecular function. Cytokines -cytokine receptor was the most enriched pathways. Among 1013 identified DEGs in lesional group, 36 DEGs were found to have altered genetic signature including IL1B and STAT3 which are also reported as hub genes. CCNB1, CCNA2, CDK1, IL1B, CXCL8, MKI 67, ESR1, UBE2C, STAT1 and STAT3 were top 10 hub gene. Conclusion: The hub genes, genomic altered DEGs and other newly identified differentially dysregulated genes would improve our understanding of psoriasis pathogenesis, moreover, the hub genes could be explored as potential therapeutic targets for psoriasis.


2019 ◽  
Vol 17 (4) ◽  
pp. 290-303
Author(s):  
Sangsang Li ◽  
Yanfei Li ◽  
Bingpeng Deng ◽  
Jie Yan ◽  
Yong Wang

Background: The abuse of psychostimulants such as methamphetamine (METH) is common in human immunodeficiency virus (HIV)-infected individuals. Acquired immunodeficiency syndrome (AIDS) patients taking METH and antiretroviral drugs could suffer severe neurologic damage and cognitive impairment. Objective: To reveal the underlying neuropathologic mechanisms of an HIV protease inhibitor (PI) combined with METH, growth-inhibition tests of dopaminergic cells and RNA sequencing were performed. Methods: A combination of METH and PI caused more growth inhibition of dopaminergic cells than METH alone or a PI alone. Furthermore, we identified differentially expressed gene (DEG) patterns in the METH vs. untreated cells (1161 genes), PI vs. untreated cells (16 genes), METH-PI vs. PI (3959 genes), and METH-PI vs. METH groups (14 genes). Results: The DEGs in the METH-PI co-treatment group were verified in the brains of a mouse model using quantitative polymerase chain reaction and were involved mostly in the regulatory functions of cell proliferation and inflammation. Conclusion: Such identification of key regulatory genes could facilitate the study of their neuroprotective potential in the users of METH and PIs.


Sign in / Sign up

Export Citation Format

Share Document