scholarly journals Coefficients of variation of ground reaction force measurement in cats

PLoS ONE ◽  
2017 ◽  
Vol 12 (3) ◽  
pp. e0171946 ◽  
Author(s):  
Eva Schnabl-Feichter ◽  
Alexander Tichy ◽  
Barbara Bockstahler
Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2641 ◽  
Author(s):  
Junghoon Park ◽  
Sangjoon Kim ◽  
Youngjin Na ◽  
Yeongjin Kim ◽  
Jung Kim

Wearable ground reaction force (GRF) measurement systems make it possible to measure the GRF in any environment, unlike a commercial force plate. When performing kinetic analysis with the GRF, measurement of multiaxial GRF is important for evaluating forward and lateral motion during natural gait. In this paper, we propose a bendable GRF measurement system that can measure biaxial (vertical and anterior-posterior) GRF without interrupting the natural gait. Eight custom small biaxial force sensors based on an optical sensing mechanism were installed in the proposed system. The interference between two axes on the custom sensor was minimized by the independent application of a cantilever structure for the two axes, and the hysteresis and repeatability of the custom sensor were investigated. After developing the system by the installation of force sensors, we found that the degree of flexibility of the developed system was comparable to that of regular shoes by investigating the forefoot bending stiffness. Finally, we compared vertical GRF (vGRF) and anterior-posterior GRF (apGRF) measured from the developed system and force plate at the same time when the six subjects walked, ran, and jumped on the force plate to evaluate the performance of the GRF measurement system.


2016 ◽  
Vol 2016 (0) ◽  
pp. J2320102
Author(s):  
Takahito SUZUKI ◽  
Kiyoshi HIROSE ◽  
Haruka CHIBA ◽  
Akiko KONDO ◽  
Hitoshi DOKI

2006 ◽  
Vol 19 (02) ◽  
pp. 81-86 ◽  
Author(s):  
J.-P. Valette ◽  
M. Sanaa ◽  
D. Grandjean ◽  
L. Fanchon

SummaryWe studied the time necessary to obtain reliable kinetic data from healthy dogs trotting on a treadmill. Ten adult male Malinois Belgian Shepherd dogs were made to trot on an instrumented treadmill to record the ground reaction force for the entire body and to determine the vertical force variables (peak [PFz], impulse [IFz], stride time [Str], peak time [Tz] and contact time [Ct]). Data were collected from each dog, during three sequences per day, on three consecutive days. In order to determine the contribution of the ‘sequence’, ‘day of measurement’, and ‘dog’ factors and the percentage of variance attributable to dogs, data were analyzed with a linear mixed model. The curve shapes were similar to those obtained with a floor-mounted force platform. Intra-dog coefficients of variation were between 1.57 and 3.46%. Inter-dog coefficients of variation were between 4.18 and 7.82%. A sequence effect was not noted. Each day had a significant effect on all of the data. All variables differed significantly from the first day compared to the other days. However there was not any difference between days 2 and 3. The percentage of the total variance attributable to dogs ranged from 37 to 88%. The coefficients of variation were lower than those obtained with common protocols. The treadmill locomotion remained consistent during a single session. Even if interday variation needs to be accounted for, reliable data can still be obtained after a single training session. The majority of the variation was attributable to the dog. An instrumented treadmill may be used for kinetic analysis.


2018 ◽  
Vol 37 (10) ◽  
pp. 1129-1138 ◽  
Author(s):  
Geoffrey T. Burns ◽  
Jessica Deneweth Zendler ◽  
Ronald F. Zernicke

Sign in / Sign up

Export Citation Format

Share Document