High sensitive and large area force plate for ground reaction force measurement of ant running

Author(s):  
Sumihiro Kohyama ◽  
Hidetoshi Takahashi ◽  
Tomoyuki Takahata ◽  
Isao Shimoyama
Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2641 ◽  
Author(s):  
Junghoon Park ◽  
Sangjoon Kim ◽  
Youngjin Na ◽  
Yeongjin Kim ◽  
Jung Kim

Wearable ground reaction force (GRF) measurement systems make it possible to measure the GRF in any environment, unlike a commercial force plate. When performing kinetic analysis with the GRF, measurement of multiaxial GRF is important for evaluating forward and lateral motion during natural gait. In this paper, we propose a bendable GRF measurement system that can measure biaxial (vertical and anterior-posterior) GRF without interrupting the natural gait. Eight custom small biaxial force sensors based on an optical sensing mechanism were installed in the proposed system. The interference between two axes on the custom sensor was minimized by the independent application of a cantilever structure for the two axes, and the hysteresis and repeatability of the custom sensor were investigated. After developing the system by the installation of force sensors, we found that the degree of flexibility of the developed system was comparable to that of regular shoes by investigating the forefoot bending stiffness. Finally, we compared vertical GRF (vGRF) and anterior-posterior GRF (apGRF) measured from the developed system and force plate at the same time when the six subjects walked, ran, and jumped on the force plate to evaluate the performance of the GRF measurement system.


2006 ◽  
Vol 3 (4) ◽  
pp. 209-216 ◽  
Author(s):  
Pia Gustås ◽  
Christopher Johnston ◽  
Stig Drevemo

AbstractThe objective of the present study was to compare the hoof deceleration and ground reaction forces following impact on two different surfaces. Seven unshod Standardbreds were trotted by hand at 3.0–5.7 m s− 1 over a force plate covered by either of the two surfaces, sandpaper or a 1 cm layer of sand. Impact deceleration data were recorded from one triaxial accelerometer mounted on the fore- and hind hooves, respectively. Ground reaction force data were obtained synchronously from a force plate, sampled at 4.8 kHz. The differences between the two surfaces were studied by analysing representative deceleration and force variables for individual horses. The maximum horizontal peak deceleration and the loading rates of the vertical and the horizontal forces were significantly higher on sandpaper compared with the sand surface (P < 0.001). In addition, the initial vertical deceleration was significantly higher on sandpaper in the forelimb (P < 0.001). In conclusion, it was shown that the different qualities of the ground surface result in differences in the hoof-braking pattern, which may be of great importance for the strength of the distal horse limb also at slow speeds.


2018 ◽  
Vol 3 (3) ◽  
pp. 2473011418S0020 ◽  
Author(s):  
Irene Davis ◽  
Todd Hayano ◽  
Adam Tenforde

Category: Other Introduction/Purpose: While the etiology of injuries is multifactorial, impact loading, as measured by the loadrate of the vertical ground reaction force has been implicated. These loadrates are typically measured with a force plate. However, this limits the measure of impacts to laboratory environments. Tibial acceleration, another measure of running impacts, is considered a surrogate for loadrate. It can be measured using new wearable technology that can be used in a runner’s natural environment. However, the correlation between tibial acceleration measured from mobile devices and vertical ground reaction force loadrates, measured from forceplates, is unknown. The purpose of this study was to determine the correlation between vertical and resultant loadrates to vertical and resultant tibial acceleration across different footstrike patterns (FSP) in runners. Methods: The study involved a sample of convenience made up of 169 runners (74 F, 95 M; age: 38.66±13.08 yrs) presenting at a running injury clinic. This included 25 habitual forefoot strike (FFS), 17 midfoot strike (MFS) and 127 rearfoot strike (RFS) runners. Participants ran on an instrumented treadmill (average speed 2.52±0.25 m/s), with a tri-axial accelerometer attached at the left distal medial tibia. Only subjects running with pain <3/10 on a VAS scale during the treadmill run were included to reduce the confounding effect of pain. Vertical average, vertical instantaneous and resultant instantaneous loadrates (VALR, VILR and RILR) and peak vertical and resultant tibial accelerations (VTA, RTA) were averaged for 8 consecutive left steps. Correlation coefficients (r) were calculated between tibial accelerations and loadrates. Results: All tibial accelerations were significantly correlated across all loadrates, with the exception of RTA with VILR for FFS (Table 1) which was nearly significant (p=0.068). Correlations ranged from 0.37-0.82. VTA was strongly correlated with all loadrates (r = 0.66). RTA was also strongly correlated with both loadrates for RFS and MFS, but only moderately correlated with loadrates for FFS (r = 0.47). Correlations were similar across the different loadrates (VALR, VILR, RILR). Conclusion: The stronger correlation between vertical tibial acceleration and all loadrates (VALR, VILR, RILR) suggests that it may be the best surrogate for loadrates when studying impact loading in runners.


2007 ◽  
Vol 23 (3) ◽  
pp. 180-189 ◽  
Author(s):  
Niell G. Elvin ◽  
Alex A. Elvin ◽  
Steven P. Arnoczky

Modern electronics allow for the unobtrusive measurement of accelerations outside the laboratory using wireless sensor nodes. The ability to accurately measure joint accelerations under unrestricted conditions, and to correlate them with jump height and landing force, could provide important data to better understand joint mechanics subject to real-life conditions. This study investigates the correlation between peak vertical ground reaction forces, as measured by a force plate, and tibial axial accelerations during free vertical jumping. The jump heights calculated from force-plate data and accelerometer measurements are also compared. For six male subjects participating in this study, the average coefficient of determination between peak ground reaction force and peak tibial axial acceleration is found to be 0.81. The coefficient of determination between jump height calculated using force plate and accelerometer data is 0.88. Data show that the landing forces could be as high as 8 body weights of the jumper. The measured peak tibial accelerations ranged up to 42 g. Jump heights calculated from force plate and accelerometer sensors data differed by less than 2.5 cm. It is found that both impact accelerations and landing forces are only weakly correlated with jump height (the average coefficient of determination is 0.12). This study shows that unobtrusive accelerometers can be used to determine the ground reaction forces experienced in a jump landing. Whereas the device also permitted an accurate determination of jump height, there was no correlation between peak ground reaction force and jump height.


2016 ◽  
Vol 2016 (0) ◽  
pp. J2320102
Author(s):  
Takahito SUZUKI ◽  
Kiyoshi HIROSE ◽  
Haruka CHIBA ◽  
Akiko KONDO ◽  
Hitoshi DOKI

Author(s):  
Kuei-Yu Chien ◽  
Wei-Gang Chang ◽  
Wan-Chin Chen ◽  
Rong-Jun Liou

Abstract Background Water jumping exercise is an alternative method to achieve maintenance of bone health and reduce exercise injuries. Clarifying the ground reaction force (GRF) of moderate and high cardiopulmonary exercise intensities for jumping movements can help quantify the impact force during different exercise intensities. Accelerometers have been explored for measuring skeletal mechanical loading by estimating the GRFs. Predictive regression equations for GRF using ACC on land have already been developed and performed outside laboratory settings, whereas a predictive regression equation for GRF in water exercises is not yet established. The purpose of this study was to determine the best accelerometer wear-position for three exercise intensities and develop and validate the ground reaction force (GRF) prediction equation. Methods Twelve healthy women (23.6 ± 1.83 years, 158.2 ± 5.33 cm, 53.1 ± 7.50 kg) were recruited as participants. Triaxial accelerometers were affixed 3 cm above the medial malleolus of the tibia, fifth lumbar vertebra, and seventh cervical vertebra (C7). The countermovement jump (CMJ) cadence started at 80 beats/min and increased by 5 beats per 20 s to reach 50%, 65%, and 80% heart rate reserves, and then participants jumped five more times. One-way repeated analysis of variance was used to determine acceleration differences among wear-positions and exercise intensities. Pearson’s correlation was used to determine the correlation between the acceleration and GRF per body weight on land (GRFVLBW). Backward regression analysis was used to generate GRFVLBW prediction equations from full models with C7 acceleration (C7 ACC), age, percentage of water deep divided by body height (PWDH), and bodyweight as predictors. Paired t-test was used to determine GRFVLBW differences between values from the prediction equation and force plate measurement during validation. Lin’s CCC and Bland–Altman plots were used to determine the agreement between the predicted and force plate-measured GRFVLBW. Results The raw full profile data for the resultant acceleration showed that the acceleration curve of C7 was similar to that of GRFv. The predicted formula was − 1.712 + 0.658 * C7ACC + 0.016 * PWDH + 0.008 * age + 0.003*weight. Lin’s CCC score was 0.7453, with bias of 0.369%. Conclusion The resultant acceleration measured at C7 was identified as the valid estimated GRFVLBW during CMJ in water.


Motor Control ◽  
2020 ◽  
Vol 24 (1) ◽  
pp. 39-56
Author(s):  
James Hackney ◽  
Jade McFarland ◽  
David Smith ◽  
Clinton Wallis

Most studies of high-speed lower body movements include practice repetitions for facilitating consistency between the trials. We investigated whether 20 repetitions of drop landing (from a 30.5-cm platform onto a force plate) could improve consistency in maximum ground reaction force, linear lower body stiffness, depth of landing, and jump height in 20 healthy, young adults. Coefficient of variation was the construct for variability used to compare the first to the last five repetitions for each variable. We found that the practice had the greatest effect on maximum ground reaction force (p = .017), and had smaller and similar effects on lower body stiffness and depth of landing (p values = .074 and .044, respectively), and no measurable effect on jump height. These findings suggest that the effect of practice on drop landing differs depending upon the variable measure and that 20 repetitions significantly improve consistency in ground reaction force.


Sign in / Sign up

Export Citation Format

Share Document