scholarly journals Long-term dietary replacement of fishmeal and fish oil in diets for rainbow trout (Oncorhynchus mykiss): Effects on growth, whole body fatty acids and intestinal and hepatic gene expression

PLoS ONE ◽  
2018 ◽  
Vol 13 (1) ◽  
pp. e0190730 ◽  
Author(s):  
Viviana Lazzarotto ◽  
Françoise Médale ◽  
Laurence Larroquet ◽  
Geneviève Corraze
Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 456
Author(s):  
Amélie Bélanger ◽  
Pallab K. Sarker ◽  
Dominique P. Bureau ◽  
Yvan Chouinard ◽  
Grant W. Vandenberg

Aquaculture feed formulation has recently turned its focus to reduce the reliance on marine-derived resources and utilise alternative feedstuffs, as an approach to improve the environmental sustainability of the aquaculture sector. The fish oil market is highly volatile, and availability of this commodity is continuously decreasing for use in aquaculture. Currently, a growing number of commercial efforts producing microalgae are providing omega 3-rich oil for sustainable aquaculture feed. This study was focused to determine the nutrient digestibility of a marine microalga, Schizochytrium spp., which is rich in docosahexaenoic acid (DHA) and long-chain polyunsaturated fatty acids (LC-PUFA), as a novel dietary lipid source that could be utilized effectively by rainbow trout (Oncorhynchus mykiss). A whole-cell Schizochytrium spp. biomass was used in the digestibility experiment at two different temperatures, 8 °C and 15 °C. No significant differences were detected between the two temperatures for the apparent digestibility coefficients (ADCs) of the dry matter (94.3 ± 4.9%), total lipids (85.8 ± 0.0%), crude proteins (89.5 ± 1.8%), energy (83.1 ± 1.7%) and fatty acids (85.8 ± 7.5%). The ADCs of the nutrients, energy, DHA and other fatty acids showed that Schizochytrium spp. is a high-quality candidate for fish oil substitution and supplement of LC-PUFA in fish feed with vegetable oils.


2021 ◽  
Vol 325 (4) ◽  
pp. 495-501
Author(s):  
E.A. Zykina ◽  
M.V. Gurin

Recently, the task of artificial cultivation of especially valuable fish species in aquaculture has become more and more urgent. The value of salmon fish, and in particular rainbow trout Oncorhynchus mykiss (Walbaum, 1792) available for breeding, is largely determined by the high content of biologically active essential and polyunsaturated fatty acids of the group ω-6 and ω-3, necessary for vital activity and not synthesized by the human body. Since the natural stocks of many popular fatty fish have decreased, farmed fish can help meet consumer demand for this product. Based on this, the assessment of the content of the main ω-6 and ω-3 fatty acids in the fat of rainbow trout grown in closed-loop water supply installations (USV) was made. The fat was extracted from the fish by thermal method with further distillation by supercritical fluid extraction on the SFT-150 unit. The ratio of fatty acids in the fish oil sample was determined using the Chromatek-Kristall-5000 M hardware and software complex. The results obtained were compared with the standard for salmon fish oil “Aquaculture products” and “Wild fish”. It is established that trout cultivated in the UZV in the Penza region, in terms of the content of the main essential fatty acids, is not inferior to the quality indicators of the standard in terms of the requirements for salmon fish of “Aquaculture products”. In fish, all essential fatty acids are present in sufficient quantities, the ratio of ω-6 to ω-3 is 2.6:1, which indicates a high nutritional value of the product and allows it to be used in human food to provide the body with essential fatty acids, as well as a raw material for obtaining therapeutic and preventive products.


2016 ◽  
Vol 310 (3) ◽  
pp. R305-R312 ◽  
Author(s):  
Alex M. Zimmer ◽  
Chris M. Wood

All teleost fish produce ammonia as a metabolic waste product. In embryos, ammonia excretion is limited by the chorion, and fish must detoxify ammonia by synthesizing urea via the ornithine urea cycle (OUC). Although urea is produced by embryos and larvae, urea excretion (Jurea) is typically low until yolk sac absorption, increasing thereafter. The aim of this study was to determine the physiological and molecular characteristics of Jurea by posthatch rainbow trout ( Oncorhynchus mykiss). Following hatch, whole body urea concentration decreased over time, while Jurea increased following yolk sac absorption. From 12 to 40 days posthatch (dph), extra-branchial routes of excretion accounted for the majority of Jurea, while the gills became the dominant site for Jurea only after 55 dph. This represents the most delayed branchial ontogeny of any process studied to date. Urea transporter (UT) gene expression in the gills and skin increased over development, consistent with increases in branchial and extra-branchial Jurea. Following exposure to 25 mmol/l urea, the accumulation and subsequent elimination of exogenous urea was much greater at 55 dph than 12 dph, consistent with increased UT expression. Notably, UT gene expression in the gills of 55 dph larvae increased in response to high urea. In summary, there is a clear increase in urea transport capacity over posthatch development, despite a decrease in OUC activity.


Sign in / Sign up

Export Citation Format

Share Document