scholarly journals High spatial variation in population size and symbiotic performance of Rhizobium leguminosarum bv. trifolii with white clover in New Zealand pasture soils

PLoS ONE ◽  
2018 ◽  
Vol 13 (2) ◽  
pp. e0192607 ◽  
Author(s):  
Steven Wakelin ◽  
Guyléne Tillard ◽  
Robert van Ham ◽  
Ross Ballard ◽  
Elizabeth Farquharson ◽  
...  
Author(s):  
B.R. Watkin

AN Aberystwyth selection of tall fescue (Festuca arundinacea Schreb.), known as S170, was sown with certified New Zealand white clover (Trifolium repens) and re' clover (T. pratense) and compared under sheep grazing with other grass/clover pastures at the Grasslands Division Regional Station at Lincoln (Watkin, 1975) .


Author(s):  
R.W. Hofmann ◽  
B.D. Campbell ◽  
E.E. Swinny ◽  
S.J. Bloor ◽  
K.R. Markham ◽  
...  

During summertime in New Zealand, white clover experiences high levels of ultraviolet-B (UV-B) radiation. This frequently coincides with periods of summer drought. We investigated responses to UV-B and to the combination of UV-B and drought in various white clover populations, including New Zealand cultivars and ecotypes as well as overseas germplasm. The results were obtained under controlled environmental conditions in three independent trials. Overall, white clover growth was reduced by UV-B. The population comparisons indicated that low growth rate and adaptation to other forms of stress may be related to UV-B tolerance under well-watered conditions, but not during extended periods of drought. Flavonoid pigments that are involved in stress protection were strongly increased under UV-B and were further enhanced in the combination of UV-B and drought. The responses among these flavonoids were highly specific, with more pronounced UV-B-induced increases in quercetin glycosides, compared to their closely related kaempferol counterparts. UV-B toler ance of the less productive white clover populations was linked to the accumulation of quercetin compounds. In conclusion, these studies suggest (i) that slow-growing white clover ecotypes adapted to other stresses have higher capacity for biochemical acclimation to UV-B under well-watered conditions and (ii) that these biochemical attributes may also contribute to decreased UV-B sensitivity across white clover populations under drought. The findings alert plant breeders to potential benefits of selecting productive germplasm for high levels of specific flavonoids to balance trade-offs between plant productivity and stress tolerance. Keywords: Drought, flavonoids, genetic variation, HPLC, kaempferol, quercetin, str ess, Trifolium repens L., ultraviolet-B, white clover


Author(s):  
W.M. Williams ◽  
L.B. Anderson ◽  
B.M. Cooper

In evaluations of clover performances on summer-dry Himatangi sandy soil, it was found that none could match lucerne over summer. Emphasis was therefore placed on production in autumn-winter- early spring when lucerne growth was slow. Evaluations of some winter annual clover species suggested that Trifolium spumosum, T. pallidum, T. resupinatum, and T. vesiculosum would justify further investigation, along with T. subterraneum which is already used in pastures on this soil type. Among the perennial clover species, Kenya white clover (7'. semipilosum) showed outstanding recovery from drought and was the only species to produce significantly in autumn. However, it failed to grow in winter-early spring. Within red clover, materials of New Zealand x Moroccan origin substantially outproduced the commercial cultivars. Within white clover, material from Israel, Italy and Lebanon, as well as progeny of a selected New Zealand plant, showed more rapid recovery from drought stress and subsequently better winter growth than New Zealand commercial material ('Grasslands Huia'). The wider use of plant material of Mediterranean origin and of plants collected in New Zealand dryland pastures is advocated in development of clover cultivars for New Zealand dryland situations.


BMC Genetics ◽  
2017 ◽  
Vol 18 (1) ◽  
Author(s):  
Vincent Prieur ◽  
Shannon M. Clarke ◽  
Luiz F. Brito ◽  
John C. McEwan ◽  
Michael A. Lee ◽  
...  

2021 ◽  
Author(s):  
◽  
Caitlyn Shannon

<p>The global marine environment is currently facing unprecedented anthropomorphic change and stress. One such stressor is plastic pollution, which has continually increased in magnitude since mass production began in the 1940’s. An increase in plastic debris throughout the oceans not only results in an infiltration of the pollutants throughout the entirety of the marine environment, but also increases the risk that it impacts the physiological, structural, and behavioural traits of various organisms – including humans. These negative interactions are particularly likely with microplastic particles (< 5 mm), as they can enter and be transferred throughout the food web with ease. However, research in the field of microplastic pollution is extremely one-sided, with most present studies focusing on the Northern Hemisphere. Additionally, comparatively little has been investigated regarding temporal and spatial patterns of microplastic occurrence. The aim of this research was to 1) examine the abundance and distribution of synthetic particles in sub-surface waters of the Southern Ocean, across broad temporal and spatial scales and 2) examine finer-scale spatial and temporal patterns of microplastic load within the urbanised Wellington Harbour, New Zealand, using a combination of environmental and biological indicators.  To assess the broad-scales of temporal and spatial variation in the Southern Ocean, annual Continuous Plankton Recorder (CPR) tows were undertaken between New Zealand waters and the Ross Sea, Antarctica, over a span of 9 years (the austral summers of 2009/10 – 2017/18) and a range of 5 oceanographic zones and two frontal systems, totalling a distance of approximately 22,000 km. Overall, patterns were inconsistent, with no constant increase or decrease in load throughout the years, while spatial variation was minimal and not associated with particular oceanographic fronts or proximity to an urban area. Despite no consistent spatial variation, temporal differences did occur between years. Again, there were no identifiably consistent trends across years (i.e. a gradual increase), but there was a substantial peak in 2009/10 and a trough in 2012/13. Such changes are likely due to large-scale variations in ocean circulation systems, along with environmental drivers such as El Niño and La Niña events.  To investigate the microplastic load in a more urbanised environment, 3-monthly surveys were undertaken with surface waters, beach sediments, and M. gallloprovincialis mussels in Wellington Harbour, New Zealand, using samples from three sites for beach and mussel surveys, and two sites for the surface water tows. Weekly variation was also measured for beach sediments and mussel tissues. Again, no consistency was observed in temporal or spatial variation for any environmental or biological indicator, however the average pollutant loads were on par with reported results in other literature, particularly for M. galloprovincialis tissues. Temporally, the peak microplastic load in the tissues of the mussel, M. galloprovincialis, appeared to correlate with the peak load found within the surface waters of the harbour, indicating a possible relationship between plastic pollution in the environment and that which is found within organisms. Finally, the spatial variation observed within beach sediments was far larger than that seen throughout the mussel tissues, supporting the idea that beach sediments are microplastic sinks, but also susceptible to a range of environmental drivers including wind strength, wind direction, and sediment erosion.  Throughout the Southern Ocean and within Wellington Harbour, particle characteristics were similar, in that microfibres were the prevailing synthetic morphotype – accounting for upwards of 90% of all particles found. These results are similar to reports from other current literature, but not associated with public knowledge that is currently in the media and represented in the legislation. The results of this thesis illustrate the importance of monitoring and managing the occurrence and effect of microplastics on both fine- and broad-scales of temporal and spatial variation and helps address the knowledge gap surrounding microplastics in the Southern Hemisphere.</p>


1996 ◽  
Vol 6 ◽  
pp. 19-24
Author(s):  
P.T.P. Clifford ◽  
G.A. Sparks ◽  
D.R. Woodfield

For the last five years an average 14,761 ha of white clover has been grown for seed, with 77%, 8% and 15% sown in public cultivars, New Zealand and overseas proprietary cultivars, respectively. The area presently contaminated by proprietaries is estimated at 20,000 ha. New Zealand requirements for cultivar-change are more effective than OECD requirements. The five-year break period enables successful cultivar change in 90% of cases and is improved further when buried seed counts were used prior to sowing to indicate paddocks with unacceptable buried seed load. Current isolation distances appear adequate with virtually all foreign pollen deposition occurring within 24m of the pollen source. Capture of additional public cultivar area (77%) by proprietary cultivars will rely on increasing the seed yields of proprietary cultivars by approximately 25%. This is realisable through greater attention to the environmental requirements of each cultivar and through better technology transfer between head licencees and growers. Keywords: buried seed, crop areas, cultivar-change requirements, public cultivars, proprietary cultivars, seed production, Trifolium repens L., white clover


Sign in / Sign up

Export Citation Format

Share Document