scholarly journals Comparative pyrolysis kinetics of various biomasses based on model-free and DAEM approaches improved with numerical optimization procedure

PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0206657 ◽  
Author(s):  
Miloš Radojević ◽  
Bojan Janković ◽  
Vladimir Jovanović ◽  
Dragoslava Stojiljković ◽  
Nebojša Manić
2019 ◽  
Vol 38 (3) ◽  
pp. 271-278 ◽  
Author(s):  
Zhitong Yao ◽  
Shaoqi Yu ◽  
Weiping Su ◽  
Weihong Wu ◽  
Junhong Tang ◽  
...  

Thermal treatment offers advantages of significant volume reduction and energy recovery for the polyurethane foam from waste refrigerators. In this work, the pyrolysis kinetics of polyurethane foam was investigated using the model-fitting, model-free and distributed activation energy model methods. The thermogravimetric analysis indicated that the polyurethane foam decomposition could be divided into three stages with temperatures of 38°C–400°C, 400°C–550°C and 550°C–1000°C. Peak temperatures for the major decomposition stage (<400°C) were determined as 324°C, 342°C and 344°C for heating rates of 5, 15 and 25 K min-1, respectively. The activation energy ( Eα) from the Friedman, Flynn–Wall–Ozawa and Tang methods increased with degree of conversion ( α) in the range of 0.05 to 0.5. The coefficients from the Flynn–Wall–Ozawa method were larger and the resulted Eα values fell into the range of 163.980–328.190 kJ mol-1 with an average of 206.099 kJ mol-1. For the Coats–Redfern method, the diffusion models offered higher coefficients, but the E values were smaller than that from the Flynn–Wall–Ozawa method. The Eα values derived from the distributed activation energy model method were determined as 163.536–334.231 kJ mol-1, with an average of 206.799 kJ mol-1. The peak of activation energy distribution curve was located at 205.929 kJ mol-1, consistent with the thermogravimetric results. The Flynn–Wall–Ozawa and distributed activation energy model methods were more reliable for describing the polyurethane foam pyrolysis process.


2021 ◽  
Vol 55 (6) ◽  
pp. 439-443
Author(s):  
Zhan-Ku Li ◽  
Hai-Tao Wang ◽  
Hong-Lei Yan ◽  
Jing-Chong Yan ◽  
Zhi-Ping Lei ◽  
...  

2014 ◽  
Vol 68 (12) ◽  
Author(s):  
Ivan Hrablay ◽  
Ľudovít Jelemenský

AbstractPyrolysis kinetics of a hardwood representative, beech (Fagus sylvatica), was investigated by two different kinetic approaches: model-free isoconversional method and model-fitting method. The model-free isoconversional method was used for the determination of apparent kinetic parameters, i.e. the activation energy and pre-exponential factor. The model fitting method was used for the optimization of kinetic parameters of the reaction pathways of three selected reaction mechanisms: one-step, two-step, and three-step one. In both approaches, thermo-gravimetric data were used at five heating rates: 2°C min−1, 5°C min−1, 10°C min−1, 15°C min−1 and 20°C min−1. As the most suitable mechanism, the three-step mechanism containing the intermediate degradation step was chosen. This selection was supported by experimental results from the 13C NMR analysis of solid residues prepared at the key temperatures within the range of 230–500°C. The progress of mass fraction values of each component in this mechanism was simulated. Conclusions from the simulation were confronted with experimental results from the 13C NMR.


2001 ◽  
Vol 23 (7) ◽  
pp. 657-663 ◽  
Author(s):  
Yilser Güldoğan ◽  
Tülay Durusoy ◽  
Tijen Bozdemir

2018 ◽  
Vol 50 (1) ◽  
pp. 77-87 ◽  
Author(s):  
Ruijuan Wang ◽  
Fang Liang ◽  
Changle Jiang ◽  
Zehui Jiang ◽  
Jingxin Wang ◽  
...  

2021 ◽  
Vol 226 ◽  
pp. 260-273
Author(s):  
Wenyu Sun ◽  
Zhongkai Liu ◽  
Yan Zhang ◽  
Yitong Zhai ◽  
Chuangchuang Cao ◽  
...  

2021 ◽  
Vol 13 (8) ◽  
pp. 4246
Author(s):  
Shih-Wei Yen ◽  
Wei-Hsin Chen ◽  
Jo-Shu Chang ◽  
Chun-Fong Eng ◽  
Salman Raza Naqvi ◽  
...  

This study investigated the kinetics of isothermal torrefaction of sorghum distilled residue (SDR), the main byproduct of the sorghum liquor-making process. The samples chosen were torrefied isothermally at five different temperatures under a nitrogen atmosphere in a thermogravimetric analyzer. Afterward, two different kinetic methods, the traditional model-free approach, and a two-step parallel reaction (TPR) kinetic model, were used to obtain the torrefaction kinetics of SDR. With the acquired 92–97% fit quality, which is the degree of similarity between calculated and real torrefaction curves, the traditional method approached using the Arrhenius equation showed a poor ability on kinetics prediction, whereas the TPR kinetic model optimized by the particle swarm optimization (PSO) algorithm showed that all the fit qualities are as high as 99%. The results suggest that PSO can simulate the actual torrefaction kinetics more accurately than the traditional kinetics approach. Moreover, the PSO method can be further employed for simulating the weight changes of reaction intermediates throughout the process. This computational method could be used as a powerful tool for industrial design and optimization in the biochar manufacturing process.


Sign in / Sign up

Export Citation Format

Share Document