scholarly journals Genome survey sequencing for the characterization of genetic background of Dracaena cambodiana and its defense response during dragon’s blood formation

PLoS ONE ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. e0209258 ◽  
Author(s):  
Xupo Ding ◽  
Wenli Mei ◽  
Shengzhuo Huang ◽  
Hui Wang ◽  
Jiahong Zhu ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Jiahong Zhu ◽  
Wan Zhao ◽  
Rongshuang Li ◽  
Dong Guo ◽  
Huiliang Li ◽  
...  

Dragon’s blood is a traditional medicine in which flavonoids are the main bioactive compounds; however, the underlying formation mechanism of dragon’s blood remains largely poorly understood. Chalcone isomerase (CHI) is the key enzyme in the flavonoid biosynthesis pathway. However, CHI family genes are not well understood in Dracaena cambodiana Pierre ex Gagnep, an important source plant of dragon’s blood. In this study, 11 CHI family genes were identified from D. cambodiana, and they were classified into three types. Evolutionary and transcriptional profiling analysis revealed that DcCHI1 and DcCHI4 might be involved in flavonoid production. Both DcCHI1 and DcCHI4 displayed low expression levels in stem under normal growth conditions and were induced by methyl jasmonate (MeJA), 6-benzyl aminopurine (6-BA, synthetic cytokinin), ultraviolet-B (UV-B), and wounding. The recombinant proteins DcCHI1 and DcCHI4 were expressed in Escherichia coli and purified by His-Bind resin chromatography. Enzyme activity assay indicated that DcCHI1 catalyzed the formation of naringenin from naringenin chalcone, while DcCHI4 lacked this catalytic activity. Overexpression of DcCHI1 or DcCHI4 enhanced the flavonoid production in D. cambodiana and tobacco. These findings implied that DcCHI1 and DcCHI4 play important roles in flavonoid production. Thus, our study will not only contribute to better understand the function and expression regulation of CHI family genes involved in flavonoid production in D. cambodiana but also lay the foundation for developing the effective inducer of dragon’s blood.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhao Zheng ◽  
Nannan Zhang ◽  
Zhenghui Huang ◽  
Qiaoying Zeng ◽  
Yonghong Huang ◽  
...  

AbstractPlatostoma palustre (Blume) A.J.Paton is an annual herbaceous persistent plant of the Labiatae family. However, there is a lack of genomic data for this plant, which severely restricts its genetic improvement. In this study, we performed genome survey sequencing of P. palustre and developed simple sequence repeat (SSR) markers based on the resulting sequence. K-mer analysis revealed that the assembled genome size was approximately 1.21 Gb. A total of 15,498 SSR motifs were identified and characterized in this study; among them, dinucleotide, and hexanucleotide repeats had the highest and lowest, respectively. Among the dinucleotide repeat motifs, AT/TA repeat motifs were the most abundant, and GC/CG repeat motifs were rather rare, accounting for 44.28% and 0.63%, respectively. Genetic similarity coefficient analysis by the UPMGA methods clustered 12 clones, of P. palustre and related species into two subgroups. These results provide helpful information for further research on P. palustre resources and variety improvements.


Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 372
Author(s):  
Xupo Ding ◽  
Jiahong Zhu ◽  
Hao Wang ◽  
Huiqin Chen ◽  
Wenli Mei

Dragon’s blood that is extracted from Dracaena plants has been widely used as traditional medicine in various ancient cultures. The application of dragon’s blood has a cherished history in China, even though the original plants were not discovered for some period. Dracaena cochinchinensis and Dracaena cambodiana were successively discovered in southern China during the 1970s–1980s. In the last half of the century, Chinese scientists have extensively investigated the production of dragon’s blood from these two Dracaena species, whereas these results have not been previously systematically summarized, as in the present paper. Herein, we present the applied history in ancient China and artificially induced technologies for dragon’s blood development based on these two Dracaena species, in particular, using tissue cultures seedlings and tender plants of D. cambodiana. Big data research, including transcriptomic and genomic studies, has suggested that dragon’s blood might be a defense substance that is secreted by Dracaena plants in response to (a)biotic stimuli. This review represents an effort to highlight the progress and achievements from applied history as well as induction techniques that are used for the formation of dragon’s blood that have taken place in China. Such knowledge might aid in the global conservation of wild Dracaena species and contribute to understanding dragon blood formation mechanisms, eventually assisting in the efficient utilization of limited Dracaena plant resources for the sustainable production of dragon’s blood.


2015 ◽  
Vol 11 (7) ◽  
pp. 781-793 ◽  
Author(s):  
Lei Sheng ◽  
Wenbo Chai ◽  
Xuefeng Gong ◽  
Lingyan Zhou ◽  
Ronghao Cai ◽  
...  

Fitoterapia ◽  
2014 ◽  
Vol 94 ◽  
pp. 94-101 ◽  
Author(s):  
Hai-Yan Shen ◽  
Wen-Jian Zuo ◽  
Hui Wang ◽  
You-Xing Zhao ◽  
Zhi-Kai Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document