scholarly journals Cell transfection of purified cytolethal distending toxin B subunits allows comparing their nuclease activity while plasmid degradation assay does not

PLoS ONE ◽  
2019 ◽  
Vol 14 (3) ◽  
pp. e0214313 ◽  
Author(s):  
Benoît J. Pons ◽  
Elisabeth Bezine ◽  
Mélissa Hanique ◽  
Valérie Guillet ◽  
Lionel Mourey ◽  
...  
2020 ◽  
Vol 88 (10) ◽  
Author(s):  
Ming-xian Chen ◽  
Yu Chen ◽  
Rui Fu ◽  
Guo-qun Mao ◽  
Sai-yue Liu ◽  
...  

ABSTRACT The cytolethal distending toxin B subunit (CdtB) induces significant cytotoxicity and inflammation in many cell types that are involved in the pathogenesis of postinfectious irritable bowel syndrome (PI-IBS). However, the underlying mechanisms remain unclear. This study tested the potential role of Rab small GTPase 5a (Rab5a) in the process. We tested mRNA and protein expression of proinflammatory cytokines (interleukin-1β [IL-1β] and IL-6) in THP-1 macrophages by quantitative PCR (qPCR) and enzyme-linked immunosorbent assays (ELISAs), respectively. In the primary colonic epithelial cells, Cdt treatment induced a CdtB-Rab5a-cellugyrin association. Rab5a silencing, by target small hairpin RNAs (shRNAs), largely inhibited CdtB-induced cytotoxicity and apoptosis in colon epithelial cells. CRISPR/Cas9-mediated Rab5a knockout also attenuated CdtB-induced colon epithelial cell death. Conversely, forced overexpression of Rab5a intensified CdtB-induced cytotoxicity. In THP-1 human macrophages, Rab5a shRNA or knockout significantly inhibited CdtB-induced mRNA expression and production of proinflammatory cytokines (IL-1β and IL-6). Rab5a depletion inhibited activation of nuclear factor-κB (NF-κB) and Jun N-terminal protein kinase (JNK) signaling in CdtB-treated THP-1 macrophages. Rab5a appears essential for CdtB-induced cytotoxicity in colonic epithelial cells and proinflammatory responses in THP-1 macrophages.


2002 ◽  
Vol 42 (supplement2) ◽  
pp. S38
Author(s):  
M. Hirai ◽  
T. Hayakawa ◽  
M. Koizumi ◽  
L. Han ◽  
K. Miura ◽  
...  

2006 ◽  
Vol 74 (3) ◽  
pp. 1984-1988 ◽  
Author(s):  
Miho Watanabe ◽  
Katsura Igai ◽  
Koji Matsuoka ◽  
Atsushi Miyagawa ◽  
Toshiyuki Watanabe ◽  
...  

ABSTRACT We previously developed linear polymers bearing clustered trisaccharides of globotriaosylceramide (Gb3) as orally applicable Shiga toxin (Stx) neutralizers. Here, using a Gb3 polymer with a short spacer tethering the trisaccharide to the core, we found that shortening the spacer length markedly reduced the binding affinity for Stx2 but not Stx1. Moreover, mutational analysis revealed that the essential binding sites of the terminal trisaccharides were completely different between Stx1 and Stx2. These results provide the molecular basis for the interaction between Stx B subunits and Gb3 polymers.


2019 ◽  
Vol 36 (10) ◽  
pp. 2105-2110 ◽  
Author(s):  
Kirsten I Verster ◽  
Jennifer H Wisecaver ◽  
Marianthi Karageorgi ◽  
Rebecca P Duncan ◽  
Andrew D Gloss ◽  
...  

Abstract Horizontal gene transfer events have played a major role in the evolution of microbial species, but their importance in animals is less clear. Here, we report horizontal gene transfer of cytolethal distending toxin B (cdtB), prokaryotic genes encoding eukaryote-targeting DNase I toxins, into the genomes of vinegar flies (Diptera: Drosophilidae) and aphids (Hemiptera: Aphididae). We found insect-encoded cdtB genes are most closely related to orthologs from bacteriophage that infect Candidatus Hamiltonella defensa, a bacterial mutualistic symbiont of aphids that confers resistance to parasitoid wasps. In drosophilids, cdtB orthologs are highly expressed during the parasitoid-prone larval stage and encode a protein with ancestral DNase activity. We show that cdtB has been domesticated by diverse insects and hypothesize that it functions in defense against their natural enemies.


Sign in / Sign up

Export Citation Format

Share Document