scholarly journals Transcriptional changes associated with advancing stages of heart failure underlie atrial and ventricular arrhythmogenesis

PLoS ONE ◽  
2019 ◽  
Vol 14 (5) ◽  
pp. e0216928
Author(s):  
Mariana A. Argenziano ◽  
Michael Xavier Doss ◽  
Megan Tabler ◽  
Agapios Sachinidis ◽  
Charles Antzelevitch
2020 ◽  
Author(s):  
Dongze Zhang ◽  
Huiyin Tu ◽  
Chaojun Wang ◽  
Liang Cao ◽  
Wenfeng Hu ◽  
...  

Abstract Aims Cardiac sympathetic overactivation is an important trigger of ventricular arrhythmias in patients with chronic heart failure (CHF). Our previous study demonstrated that N-type calcium (Cav2.2) currents in cardiac sympathetic post-ganglionic (CSP) neurons were increased in CHF. This study investigated the contribution of Cav2.2 channels in cardiac sympathetic overactivation and ventricular arrhythmogenesis in CHF. Methods and results Rat CHF was induced by surgical ligation of the left coronary artery. Lentiviral Cav2.2-α shRNA or scrambled shRNA was transfected in vivo into stellate ganglia (SG) in CHF rats. Final experiments were performed at 14 weeks after coronary artery ligation. Real-time polymerase chain reaction and western blot data showed that in vivo transfection of Cav2.2-α shRNA reduced the expression of Cav2.2-α mRNA and protein in the SG in CHF rats. Cav2.2-α shRNA also reduced Cav2.2 currents and cell excitability of CSP neurons and attenuated cardiac sympathetic nerve activities (CSNA) in CHF rats. The power spectral analysis of heart rate variability (HRV) further revealed that transfection of Cav2.2-α shRNA in the SG normalized CHF-caused cardiac sympathetic overactivation in conscious rats. Twenty-four-hour continuous telemetry electrocardiogram recording revealed that this Cav2.2-α shRNA not only decreased incidence and duration of ventricular tachycardia/ventricular fibrillation but also improved CHF-induced heterogeneity of ventricular electrical activity in conscious CHF rats. Cav2.2-α shRNA also decreased susceptibility to ventricular arrhythmias in anaesthetized CHF rats. However, Cav2.2-α shRNA failed to improve CHF-induced cardiac contractile dysfunction. Scrambled shRNA did not affect Cav2.2 currents and cell excitability of CSP neurons, CSNA, HRV, and ventricular arrhythmogenesis in CHF rats. Conclusions Overactivation of Cav2.2 channels in CSP neurons contributes to cardiac sympathetic hyperactivation and ventricular arrhythmogenesis in CHF. This suggests that discovering purely selective and potent small-molecule Cav2.2 channel blockers could be a potential therapeutic strategy to decrease fatal ventricular arrhythmias in CHF.


2008 ◽  
Vol 35 (3) ◽  
pp. 222-230 ◽  
Author(s):  
Zhong Gao ◽  
Andreas S. Barth ◽  
Deborah DiSilvestre ◽  
Fadi G. Akar ◽  
Yanli Tian ◽  
...  

Heart failure (HF) is the leading cause of morbidity and mortality in the industrialized world. While the transcriptomic changes in end-stage failing myocardium have received much attention, no information is available on the gene expression patterns associated with the development of HF in large mammals. Therefore, we used a well-controlled canine model of tachycardia-induced HF to examine global gene expression in left ventricular myocardium with Affymetrix canine oligonucleotide arrays at various stages after initiation of rapid ventricular pacing ( days 3, 7, 14, and 21). The gene expression data were complemented with measurements of action potential duration, conduction velocity, and left ventricular end diastolic pressure, and dP/d t(max) over the time course of rapid ventricular pacing. As a result, we present a phenotype-centered gene association network, defining molecular systems that correspond temporally to hemodynamic and electrical remodeling processes. Gene Ontology analysis revealed an orchestrated regulation of oxidative phosphorylation, ATP synthesis, cell signaling pathways, and extracellular matrix components, which occurred as early as 3 days after the initiation of ventricular pacing, coinciding with the early decline in left ventricular pump function and prolongation of action potential duration. The development of clinically overt left ventricular dysfunction was associated with few additional changes in the myocardial transcriptome. We conclude that the majority of tachypacing-induced transcriptional changes occur early after initiation of rapid ventricular pacing. As the transition to overt HF is characterized by few additional transcriptional changes, posttranscriptional modifications may be more critical in regulating myocardial structure and function during later stages of HF.


2007 ◽  
Vol 292 (3) ◽  
pp. H1328-H1335 ◽  
Author(s):  
Anastasios P. Saliaris ◽  
Luciano C. Amado ◽  
Khalid M. Minhas ◽  
Karl H. Schuleri ◽  
Stephanie Lehrke ◽  
...  

Xanthine oxidase (XO) activity contributes to both abnormal excitation-contraction (EC) coupling and cardiac remodeling in heart failure (HF). β-Adrenergic hyporesponsiveness and abnormalities in Ca2+ cycling proteins are mechanistically linked features of the HF phenotype. Accordingly, we hypothesized that XO influences β-adrenergic responsiveness and expression of genes whose products participate in deranged EC coupling. We measured inotropic (dP/d tmax), lusitropic (τ), and vascular (elastance; Ea) responses to β-adrenergic (β-AR) stimulation with dobutamine in conscious dogs administered allopurinol (100 mg po daily) or placebo during a 4-wk induction of pacing HF. With HF induction, the decreases in both baseline and dobutamine-stimulated inotropic responses were offset by allopurinol. Additionally, allopurinol converted a vasoconstrictor effect to dobutamine to a vasodilator response and enhanced both lusitropic and preload reducing effects. To assess molecular correlates for this phenotype, we measured myocardial sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA), phospholamban (PLB), phosphorylated PLB (P-PLB), and Na+/Ca2+ transporter (NCX) gene expression and protein. Although SERCA mRNA and protein concentrations did not change with HF, both PLB and NCX were upregulated ( P < 0.05). Additionally, P-PLB and protein kinase A activity were greatly reduced. Allopurinol ameliorated all of these molecular alterations and preserved the PLB-to-SERCA ratio. Preventing maladaptive alterations of Ca2+ cycling proteins represents a novel mechanism for XO inhibition-mediated preservation of cardiac function in HF, raising the possibility that anti-oxidant therapies for HF may ameliorate transcriptional changes associated with adverse cardiac remodeling and β-adrenergic hyporesponsiveness.


Cell Cycle ◽  
2014 ◽  
Vol 13 (9) ◽  
pp. 1495-1500 ◽  
Author(s):  
Izida R Minullina ◽  
Nina P Alexeyeva ◽  
Sergey V Anisimov ◽  
Maxim V Puzanov ◽  
Svetlana N Kozlova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document