scholarly journals Maternal iron-deficiency is associated with premature birth and higher birth weight despite routine antenatal iron supplementation in an urban South African setting: The NuPED prospective study

PLoS ONE ◽  
2019 ◽  
Vol 14 (9) ◽  
pp. e0221299 ◽  
Author(s):  
Elizabeth A. Symington ◽  
Jeannine Baumgartner ◽  
Linda Malan ◽  
Amy J. Wise ◽  
Cristian Ricci ◽  
...  
Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2418 ◽  
Author(s):  
Lucía Iglesias Vázquez ◽  
Victoria Arija ◽  
Núria Aranda ◽  
Estefanía Aparicio ◽  
Núria Serrat ◽  
...  

Iron deficiency (ID), anemia, iron deficiency anemia (IDA) and excess iron (hemoconcentration) harm maternal–fetal health. We evaluated the effectiveness of different doses of iron supplementation adjusted for the initial levels of hemoglobin (Hb) on maternal iron status and described some associated prenatal determinants. The ECLIPSES study included 791 women, randomized into two groups: Stratum 1 (Hb = 110–130g/L, received 40 or 80mg iron daily) and Stratum 2 (Hb > 130g/L, received 20 or 40mg iron daily). Clinical, biochemical, and genetic information was collected during pregnancy, as were lifestyle and sociodemographic characteristics. In Stratum 1, using 80 mg/d instead of 40 mg/d protected against ID on week 36. Only women with ID on week 12 benefited from the protection against anemia and IDA by increasing Hb levels. In Stratum 2, using 20 mg/d instead of 40 mg/d reduced the risk of hemoconcentration in women with initial serum ferritin (SF) ≥ 15 μg/L, while 40 mg/d improved SF levels on week 36 in women with ID in early pregnancy. Mutations in the HFE gene increased the risk of hemoconcentration. Iron supplementation should be adjusted to early pregnancy levels of Hb and iron stores. Mutations of the HFE gene should be evaluated in women with high Hb levels in early pregnancy.


2021 ◽  
pp. 1-12
Author(s):  
Larske M. Soepnel ◽  
Veronique Nicolaou ◽  
Christine Slater ◽  
Glory Chidumwa ◽  
Naomi S. Levitt ◽  
...  

2021 ◽  
Vol 47 (1) ◽  
Author(s):  
Guoshuai Shi ◽  
Zhuo Zhang ◽  
Lu Ma ◽  
Binyan Zhang ◽  
Shaonong Dang ◽  
...  

Abstract Objective Our study aimed to explore the association between maternal iron supplementation and newborn birth weight (BW) in Shaanxi Province using quantile regression (QR). Method The data used in this study were derived from a large cross-sectional survey of a population in Shaanxi Province, Northwest China. A total of 28,209 women and their infants were selected using a stratified multistage random sampling method. The effect of iron supplementation on the newborn BW was assessed by a multiple linear regression model and QR. Results A total of 5.15% of the women took iron supplements during pregnancy. Multiple linear regression showed that the iron supplementation during pregnancy had positive effects on the BW, with an average increase of 43.07 g (β = 43.07, t = 3.55, and p < 0.001). The QR showed that the iron supplementation during pregnancy was associated with an increased newborn BW from very low to higher percentiles (quantiles: 0 ~ 0.40), with the β ranging from 136.51 to 43.86. As the percentiles of the BW increased, the neonatal BW gain gradually declined in the iron supplementation group compared with the group that did not receive iron supplementation (quantiles: 0 ~ 0.40, with the β ranging from 136.51 to 43.86). Iron supplementation was more effective among women who suffered from anemia during pregnancy (β = 45.84, t = 2.05, and p = 0.04; quantiles: 0 ~ 0.15, 0.30, 0.80, with β ranging from 150.00 to 39.29) than it was in any other group (β = 38.18, t = 2.62, and p = 0.009; quantiles: 0 ~ 0.15, with β ranging from 133.33 to 28.32). Conclusions Iron supplementation during pregnancy is associated with an increased newborn BW, and the effect was more obvious in the newborns with the lower BW and newborns whose mothers suffered from anemia during pregnancy.


2017 ◽  
Vol 71 (Suppl. 3) ◽  
pp. 8-14 ◽  
Author(s):  
Carla Cerami

Iron is a key nutrient and is essential for the developing fetus, neonate, infant, and child. Iron requirements are high during early stages of life because it is critically important for the production of new red blood cells and muscle cells as well as brain development. Neonates, infants, and children obtain iron from dietary sources including breast milk (lactoferrin) and heme- and non-heme-containing foods. Iron deficiency (ID) is the most common micronutrient deficiency in children and pregnant women worldwide. ID and iron deficiency anemia (IDA) can affect growth and energy levels as well as motor and cognitive performance in the developing child. The fetus is completely dependent on maternal iron crossing through the placenta and, although it is generally well protected against deficiency at birth, ID in mothers can increase the risk of ID and IDA in their children as early as 4 months. This review will discuss the uses of iron, iron requirements, and the sources of iron from conception through childhood. In addition, it will describe the prevalence and clinical manifestations of ID and IDA in children and discuss recommendations for iron supplementation of children and pregnant women.


2019 ◽  
Vol 127 (6) ◽  
pp. 1569-1578
Author(s):  
Kazunobu Okazaki ◽  
James Stray-Gundersen ◽  
Robert F. Chapman ◽  
Benjamin D. Levine

The effects of iron stores and supplementation on erythropoietic responses to moderate altitude in endurance athletes were examined. In a retrospective study, red cell compartment volume (RCV) responses to 4 wk at 2,500 m were assessed in athletes with low ( n = 9, ≤20 and ≤30 ng/mL for women and men, respectively) and normal ( n = 10) serum ferritin levels ([Ferritin]) without iron supplementation. In a subsequent prospective study, the same responses were assessed in athletes ( n = 26) with a protocol designed to provide sufficient iron before and during identical altitude exposure. The responses to a 4-wk training camp at sea level were assessed in another group of athletes ( n = 13) as controls. RCV and maximal oxygen uptake (V̇o2max) were determined at sea level before and after intervention. In the retrospective study, athletes with low [Ferritin] did not increase RCV (27.0 ± 2.9 to 27.5 ± 3.8 mL/kg, mean ± SD, P = 0.65) or V̇o2max (60.2 ± 7.2 to 62.2 ± 7.5 mL·kg−1·min−1, P = 0.23) after 4 wk at altitude, whereas athletes with normal [Ferritin] increased both (RCV: 27.3 ± 3.1 to 29.8 ± 2.4 mL/kg, P = 0.002; V̇o2max: 62.0 ± 3.1 to 66.2 ± 3.7 mL·kg−1·min−1, P = 0.003). In the prospective study, iron supplementation normalized low [Ferritin] observed in athletes exposed to altitude ( n = 14) and sea level ( n = 6) before the altitude/sea-level camp and maintained [Ferritin] within normal range in all athletes during the camp. RCV and V̇o2max increased in the altitude group but remained unchanged in the sea-level group. Finally, the increase in RCV correlated with the increase in V̇o2max [( r = 0.368, 95% confidence interval (CI): 0.059–0.612, P = 0.022]. Thus, iron deficiency in athletes restrains erythropoiesis to altitude exposure and may preclude improvement in sea-level athletic performance. NEW & NOTEWORTHY Hypoxic exposure increases iron requirements and utilization for erythropoiesis in athletes. This study clearly demonstrates that iron deficiency in athletes inhibits accelerated erythropoiesis to a sojourn to moderate high altitude and may preclude a potential improvement in sea-level athletic performance with altitude training. Iron replacement therapy before and during altitude exposure is important to maximize performance gains after altitude training in endurance athletes.


Sign in / Sign up

Export Citation Format

Share Document