scholarly journals Brief communication: Long-term absence of Langerhans cells alters the gene expression profile of keratinocytes and dendritic epidermal T cells

PLoS ONE ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. e0223397 ◽  
Author(s):  
Qingtai Su ◽  
Aurélie Bouteau ◽  
Jacob Cardenas ◽  
Balaji Uthra ◽  
Yuanyaun Wang ◽  
...  
2019 ◽  
Author(s):  
Qingtai Su ◽  
Aurélie Bouteau ◽  
Jacob Cardenas ◽  
Balaji Uthra ◽  
Yuanyaun Wang ◽  
...  

ABSTRACTTissue-resident and infiltrating immune cells are continuously exposed to molecules derived from the niche cells that often come in form of secreted factors, such as cytokines. These factors are known to impact the immune cells’ biology. However, very little is known about whether the tissue resident immune cells in return also affect the local environment. In this study, with the help of RNA-sequencing, we show for the first time that long-term absence of epidermal resident Langerhans cells (LCs) led to significant gene expression changes in the local keratinocytes and resident dendritic epidermal T cells. Thus, immune cells might play an active role in maintaining tissue homeostasis, which should be taken in consideration at data interpretation.


2008 ◽  
Vol 578 (2-3) ◽  
pp. 270-278 ◽  
Author(s):  
Rong-qian Shi ◽  
Jong-Kook Lee ◽  
Yoshitaka Hayashi ◽  
Yoko Takeuchi ◽  
Fukushi Kambe ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4085-4085
Author(s):  
Giovanni Fernando Torelli ◽  
Roberta Maggio ◽  
Nadia Peragine ◽  
Sabina Chiaretti ◽  
Maria Stefania De Propris ◽  
...  

Abstract Abstract 4085 Poster Board III-1020 Introduction Umbilical cord blood (CB) stem cells are now broadly used in the unrelated stem cell transplant setting and comparative studies with different stem cell sources have shown that CB transplant is characterized by a lower risk of graft-versus-host disease (GVHD). The immaturity of CB T cells has been generally regarded as the main contributing factor accounting for this phenomenon; the possible role played by CB regulatory T cells (Tregs) for the suppression of the allogeneic T-cell response is now under investigation, but very scare data are so far available. Aim of this study was to analyze and compare the functional properties and the gene expression profile of Tregs expanded from CB units with those expanded from the peripheral blood (PB) of adult normal donors. Methods Tregs were purified from mononuclear cells obtained from 23 CB units and from the PB of 13 adult normal donors using the CD4+CD25+ regulatory T-cell isolation kit (Miltenyi Biotec) and expanded for 6 days in 96-well U-Bottom plates coated with the anti-CD3 (5 ug/ml) and anti-CD28 (5 ug/ml) MoAbs in the presence of IL-2 (100 U/ml). Immunophenotypic analyses were performed before and after expansion. To assess their suppressive functions, expanded Tregs were seeded with autologous effector T cells stimulated with allogeneic dendritic cells (DC) pulsed with apoptotic leukemic blasts, then incubated with [3H]-thymidine and counted in a beta-counter. Suppressor activity was measured as [3H]-thymidine incorporation in the presence or absence of Tregs. The IL-10 production capacity of expanded Tregs was tested using an ELISA assay. The two-sided student t test was used to evaluate the significance of differences between groups. Gene expression profile experiments were performed using the HGU133 Plus 2.0 arrays (Affymetrix); statistical analyses were carried out using the dChip software; a t test was used to evaluate the presence of specifically expressed classes of genes. Functional annotation analysis was performed using the DAVID software. Results CB and PB Tregs presented similar immunophenotypic appearances before and after expansion. Im particular, after expansion they presented a comparable expression of surface CD4, CD25, CD62L, CCR5 and CD45RO, and of cytoplasmic CTLA-4 and Foxp3, while they both were negative for the CD45RA antigen, thus indicating the loss of their naïve features. On the contrary, Tregs obtained from CB (n=23) presented a much higher expansion capacity compared to those obtained from PB (n=13): mean fold increase (range), CB 10.3 (1.6-24), PB 3.9 (1.5-10), p 0.003. CB expanded Tregs (n=6) exerted a potent suppressive function on the proliferative reaction of T cells stimulated by allogeneic DC, that resulted inferior even though not significantly compared to that exerted by PB expanded Tregs (n=5): mean fold reduction (range), CB 7.8 (2.5-15.1), PB 14.3 (1.5-23.7), p 0.14. Tregs expanded from CB (n=4) and PB (n=1) presented a high and comparable in vitro IL-10 production capacity: mean pg/ml (range), CB 326.5 (226-426), PB 382. Gene expression profile analysis showed a higher number of upregulated genes in Tregs expanded from CB (n=2) compared to Tregs expanded from PB (n=3); among them, a significant enrichment of genes involved in cell proliferation, cell cycle checkpoints, signal transduction, cell differentiation, apoptosis, TGF-β receptor pathway and the GrNH pathway was observed. This suggests that CB Tregs retain a more undifferentiated program and are characterized by the high expression of genes which might provide an advantage in cell expansion. Finally, when looking at the Foxp3 gene expression levels, no difference was observed between the two populations. Conclusions These results demonstrate that Tregs contained in CB retain an expansion potential superior to that of Tregs isolated from the PB of normal donors, as confirmed by functional analyses and gene profile. Tregs expanded from CB and PB seem to exert a potent and comparable suppressive function of the proliferative effect in mixed lymphocyte reaction assays. The maintaining of the modulatory properties after expansion is confirmed by the expression of the Foxp3 gene and protein, and by the production of IL-10. These data offer further insights into the understanding of the biology of CB transplantation indicating a possible role played by CB Tregs in the suppression of the allogeneic T-cell response. Disclosures: No relevant conflicts of interest to declare.


Tumor Biology ◽  
2009 ◽  
Vol 30 (3) ◽  
pp. 160-170 ◽  
Author(s):  
Andreas Jeron ◽  
Susanne Pfoertner ◽  
Dunja Bruder ◽  
Robert Geffers ◽  
Peter Hammerer ◽  
...  

CHEST Journal ◽  
1997 ◽  
Vol 111 (3) ◽  
pp. 606-611 ◽  
Author(s):  
Christopher K.W. Lai ◽  
Sheng Ho ◽  
Christopher H.S. Chan ◽  
Joseph Chan ◽  
Dominic Choy ◽  
...  

2018 ◽  
Vol 6 (3) ◽  
pp. 75-82 ◽  
Author(s):  
Artur Bryja ◽  
Marta Dyszkiewicz-Konwińska ◽  
Maurycy Jankowski ◽  
Piotr Celichowski ◽  
Katarzyna Stefańska ◽  
...  

Abstract The oral mucosa is a compound tissue composed of several cells types, including fibroblasts and keratinocytes, that are characterized by different morphology, as well as biochemical and metabolomic properties. The oral mucosal cells are the most important factors mediated between transport and drugs delivery. The changes in cellular ion homeostasis may significantly affect the bioavailability of administrated drugs and their transport across the mucous membrane. Therefore we investigated the expression profile of genes involved in ion transport and homeostasis in porcine buccal pouch mucosal cells. The oral mucosa was separated surgically and isolated enzymatically. The cells were examined during long-term in vitro culture (IVC). The cultured cells were collected at 7, 15 and 30 days of IVC and subsequently transferred to RNA isolation and next, the gene expression profile was measured using Affymetrix microarray assays. In the results, we can extract genes belonging to four ontology groups: “ion homeostasis”, “ion transport”, “metal ion transport”, and “inorganic ion homeostasis”. For TGFB1 and CCL2, we observed up-regulation after 7 days of IVC, down-regulation after 15 days of IVC and upregulation again after 30 days of IVC. The ATP13A3, ATP1B1, CCL8, LYN, STEAP1, PDPN, PTGS2, and SLC5A3genes showed high activity after day 7 of IVC, and in the days 15 and 30 of IVC showed low activity. We showed an expression profile of genes associated with the effects of ion influence on the porcine normal oral mucosal cell development in IVC. These studies may be the starting point for further research into oral diseases and will allow for the comparison of the gene expression profile of normal and disease altered cells.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4024-4024
Author(s):  
Christiane Querfeld ◽  
Xiwei Wu ◽  
Tracy Stiller ◽  
Joycelynne Palmer ◽  
James F Sanchez ◽  
...  

Background: T cells in CTCL are functionally exhausted and are characterized by the expression of immune inhibitory molecules such as PD1 and PD-L1 (Cancer Immunol Res 6; 2018). These findings justify the evaluation of immune checkpoint inhibition to reverse T cell exhaustion in CTCL. We initiated a phase 1/2 clinical trial of lenalidomide and durvalumab to determine the safety and efficacy of this regimen. Durvalumab is a human monoclonal antibody with high affinity and selectivity for PD-L1, targeting exhausted T cells and distinct cells within their environment. Lenalidomide, an oral immunomodulatory drug (IMiD) and analog of thalidomide, has previously shown activity in CTCL (Blood 123; 2014). Durvalumab may restore an anti-tumor immune response, and the combination of durvalumab and lenalidomide may enhance immune checkpoint blockade-induced immune responses. Associations between immune checkpoints, gene expression profile and the clinical efficacy of durvalumab/lenalidomide combination were evaluated. The primary objectives were to determine the recommended phase 2 dose of lenalidomide in combination with durvalumab and safety with primary endpoint of toxicity (using CTCAE 4.03). Secondary end points included objective response rate (ORR) and median duration. Relationships between gene expression profile (GEP), PD-L1 expression, and antitumor activity were exploratory end points. Methods: A Phase 1 portion (NCT03011814) is ongoing to evaluate the safety and tolerability of the durvalumab and lenalidomide combination. Pts are enrolled in sequential cohorts to receive durvalumab (fixed dose at 1500 mg) and dose escalation of lenalidomide (dose level 1 = 10 mg for all cycles; dose level 2 = 10 mg for cycle 1, 15 mg for all subsequent cycles; dose level 3 =10 mg for cycle 1, 15 mg for cycle 2, and 20 mg for all subsequent cycles) to characterize safety, efficacy and antitumor activity. Serial skin samples were collected to assess the impact on the tumor microenvironment and anti-tumor activity. Results: Ten pts. were evaluable for toxicities. Nine patients were evaluable for response with three patients at each dose level. 8 males/2 females, age 29-59 y, with refractory/advanced CTCL, clinical stages IB (1), IIA (3), IIB (4), IIIA (1), and aggressive epidermotropic CD8+ CTCL (1) and a median of prior systemic treatments of 3 (range, 2-4) have been enrolled. Median follow up time was 12 (range, 3-24+) months. No serious AEs or DLTs were observed during the DLT evaluation period (cycles 1-3). The most frequently reported AEs were fatigue (n=7), skin pain (n=4), chills (n=3), anemia (n=3), and leukopenia (4). One grade 3 maculopapular rash (possibly due to lenalidomide) was observed, all other treatment-related AEs were grade 1/2 in severity. Median cycles of treatment were 7 (range, 3-20+) months. Median duration of response was 4 (range, 1- 21+) months. Six pts achieved PR, while 3 pts maintained stable disease. Three pts remain on treatment. Expression panels of several checkpoints (PD1, PD-L1 & ICOS) (Cycle1 Day1 vs Cycle 2 Day15) were analyzed. Detectable levels of PD-L1 but low levels of ICOS are observed in responding pts vs. high PD-L1 and ICOS levels in non-responders. GEP highlights downregulation of TNF-alpha signaling via NFkB, IFN-gamma, and PI3-AKT-mTOR signaling pathways among other pathways. Conclusions: Durvalumab/lenalidomide has significant clinical activity in refractory/advanced CTCL, which will be formally evaluated in the Phase 2 portion. Responses were durable and ongoing, and treatment was well tolerated. Dose escalation is up to lenalidomide 20 mg daily. Our preliminary results from pts on trial demonstrated that immune signatures on skin biopsies at baseline may be predictive of response to checkpoint blockade and yield insights into mechanisms of therapeutic resistance. Disclosures Querfeld: Bioniz: Membership on an entity's Board of Directors or advisory committees, Other: Investigator; Soligenix: Other: Investigator; Celgene: Other: Investigator, Research Funding; City of Hope Cancer Center and Beckman Research Institute: Employment; Medivir: Consultancy; Trillium: Consultancy, Other: Investigator, Research Funding; miRagen: Consultancy, Membership on an entity's Board of Directors or advisory committees, Other: Investigator; Kyowa: Membership on an entity's Board of Directors or advisory committees, Other: Investigator; Eisai: Other: Investigator; Elorac: Other: Investigator, Research Funding; Helsinn: Consultancy, Membership on an entity's Board of Directors or advisory committees, Other: Investigator. Palmer:Gilead Sciences: Consultancy. Zain:Spectrum: Consultancy; Seattle Genetics: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document