scholarly journals Genome-wide association study and genomic selection for tolerance of soybean biomass to soybean cyst nematode infestation

PLoS ONE ◽  
2020 ◽  
Vol 15 (7) ◽  
pp. e0235089
Author(s):  
Waltram Second Ravelombola ◽  
Jun Qin ◽  
Ainong Shi ◽  
Liana Nice ◽  
Yong Bao ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Ainong Shi ◽  
Paul Gepts ◽  
Qijian Song ◽  
Haizheng Xiong ◽  
Thomas E. Michaels ◽  
...  

Soybean cyst nematode (SCN, Heterodera glycines) has become the major yield-limiting biological factor in soybean production. Common bean is also a good host of SCN, and its production is challenged by this emerging pest in many regions such as the upper Midwest USA. The use of host genetic resistance has been the most effective and environmentally friendly method to manage SCN. The objectives of this study were to evaluate the SCN resistance in the USDA common bean core collection and conduct a genome-wide association study (GWAS) of single nucleotide polymorphism (SNP) markers with SCN resistance. A total of 315 accessions of the USDA common bean core collection were evaluated for resistance to SCN HG Type 0 (race 6). The common bean core set was genotyped with the BARCBean6K_3 Infinium BeadChips, consisting of 4,654 SNPs. Results showed that 15 accessions were resistant to SCN with a Female Index (FI) at 4.8 to 9.4, and 62 accessions were moderately resistant (10 < FI < 30) to HG Type 0. The association study showed that 11 SNP markers, located on chromosomes Pv04, 07, 09, and 11, were strongly associated with resistance to HG Type 0. GWAS was also conducted for resistance to HG Type 2.5.7 and HG Type 1.2.3.5.6.7 based on the public dataset (N = 276), consisting of a diverse set of common bean accessions genotyped with the BARCBean6K_3 chip. Six SNPs associated with HG Type 2.5.7 resistance on Pv 01, 02, 03, and 07, and 12 SNPs with HG Type 1.2.3.5.6.7 resistance on Pv 01, 03, 06, 07, 09, 10, and 11 were detected. The accuracy of genomic prediction (GP) was 0.36 to 0.49 for resistance to the three SCN HG types, indicating that genomic selection (GS) of SCN resistance is feasible. This study provides basic information for developing SCN-resistant common bean cultivars, using the USDA core germ plasm accessions. The SNP markers can be used in molecular breeding in common beans through marker-assisted selection (MAS) and GS.


2019 ◽  
Author(s):  
Waltram Ravelombola ◽  
Jun Qin ◽  
Ainong Shi ◽  
Fengmin Wang ◽  
Yan Feng ◽  
...  

Abstract Background Soybean [ Glycine max (L.) Merr.] is a legume of great interest worldwide. Enhancing genetic gain for agronomic traits via molecular approaches has been long considered as the main task for soybean breeders and geneticists. The objectives of this study were to evaluate maturity, plant height, seed weight, and yield in a diverse soybean accession panel, to conduct a genome-wide association study (GWAS) for these traits and identify SNP markers associated with the four traits, and to assess genomic selection (GS) accuracy. Results A total of 250 soybean accessions were evaluated for maturity, plant height, seed weight, and yield over three years. This panel was genotyped with a total of 10,259 high quality SNPs postulated from genotyping by sequencing (GBS). GWAS was performed using a Bayesian Information and Linkage Disequilibrium Iteratively Nested Keyway (BLINK) model, and GS was evaluated using a ridge regression best linear unbiased predictor (rrBLUP) model. The results revealed that a total of 20, 31, 37, 31, and 23 SNPs were significantly associated with the average 3-year data for maturity, plant height, seed weight, and yield, respectively; some significant SNPs were mapped into previously described loci ( E2 , E4 , and Dt1 ) affecting maturity and plant height in soybean and a new locus mapped on chromosome 20 was significantly associated with plant height; Glyma.10g228900 , Glyma.19g200800 , Glyma.09g196700 , and Glyma.09g038300 were candidate genes found in the vicinity of the top or the second best SNP for maturity, plant height, seed weight, and yield, respectively; a 11.5-Mb region of chromosome 10 was associated with both seed weight and yield; and GS accuracy was trait-, year-, and population structure-dependent. Conclusions The SNP markers identified from this study for plant height, maturity, seed weight and yield can be used to improve the four agronomic traits through marker-assisted selection (MAS) and GS in soybean breeding programs. After validation, the candidate genes can be transferred to new cultivars using SNP markers through MAS. The high GS accuracy has confirmed that the four agronomic traits can be selected in molecular breeding through GS.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Waltram Second Ravelombola ◽  
Jun Qin ◽  
Ainong Shi ◽  
Liana Nice ◽  
Yong Bao ◽  
...  

Abstract Background Soybean cyst nematode (SCN), Heterodera glycines Ichinohe, has been one of the most devastating pathogens affecting soybean production. In the United States alone, SCN damage accounted for more than $1 billion loss annually. With a narrow genetic background of the currently available SCN-resistant commercial cultivars, high risk of resistance breakdown can occur. The objectives of this study were to conduct a genome-wide association study (GWAS) to identify QTL, SNP markers, and candidate genes associated with soybean leaf chlorophyll content tolerance to SCN infection, and to carry out a genomic selection (GS) study for the chlorophyll content tolerance. Results A total of 172 soybean genotypes were evaluated for the effect of SCN HG Type 1.2.3.5.6.7 (race 4) on soybean leaf chlorophyll. The soybean lines were genotyped using a total of 4089 filtered and high-quality SNPs. Results showed that (1) a large variation in SCN tolerance based on leaf chlorophyll content indices (CCI); (2) a total of 22, 14, and 16 SNPs associated with CCI of non-SCN-infected plants, SCN-infected plants, and reduction of CCI SCN, respectively; (3) a new locus of chlorophyll content tolerance to SCN mapped on chromosome 3; (4) candidate genes encoding for Leucine-rich repeat protein, plant hormone signaling molecules, and biomolecule transporters; and (5) an average GS accuracy ranging from 0.31 to 0.46 with all SNPs and varying from 0.55 to 0.76 when GWAS-derived SNP markers were used across five models. This study demonstrated the potential of using genome-wide selection to breed chlorophyll-content-tolerant soybean for managing SCN. Conclusions In this study, soybean accessions with higher CCI under SCN infestation, and molecular markers associated with chlorophyll content related to SCN were identified. In addition, a total of 15 candidate genes associated with chlorophyll content tolerance to SCN in soybean were also identified. These candidate genes will lead to a better understanding of the molecular mechanisms that control chlorophyll content tolerance to SCN in soybean. Genomic selection analysis of chlorophyll content tolerance to SCN showed that using significant SNPs obtained from GWAS could provide better GS accuracy.


2019 ◽  
Author(s):  
Xuemin Wang ◽  
Emma Mace ◽  
Yongfu Tao ◽  
Alan Cruickshank ◽  
Colleen Hunt ◽  
...  

AbstractSorghum is generally grown in water limited conditions and often lodges under post-anthesis drought, which reduces yield and quality. Due to its complexity, our understanding on the genetic control of lodging is very limited. We dissected the genetic architecture of lodging in grain sorghum through genome-wide association study (GWAS) on 2308 unique hybrids grown in 17 Australian sorghum trials over 3 years. The GWAS detected 213 QTL, the majority of which showed a significant association with leaf senescence and plant height (72% and 71% respectively). Only 16 lodging QTL were not associated with either leaf senescence or plant height. The high incidence of multi-trait association for the lodging QTL indicates that lodging in grain sorghum is mainly associated with plant height and traits linked to carbohydrate remobilisation. This result supported the selection for stay-green (delayed leaf senescence) to reduce lodging susceptibility, rather than selection for short stature and lodging resistance per se, which likely reduces yield. Additionally, our data suggested a protective effect of stay-green on weakening the association between lodging susceptibility and plant height. Our study also showed that lodging resistance might be improved by selection for stem composition but was unlikely to be improved by selection for classical resistance to stalk rots.Key messageWe detected 213 lodging QTL and demonstrated that drought induced stem lodging in grain sorghum is substantially associated with stay-green and plant height, suggesting a critical role of carbon remobilisation.


Sign in / Sign up

Export Citation Format

Share Document