scholarly journals Bioreplicated coatings for photovoltaic solar panels nearly eliminate light pollution that harms polarotactic insects

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243296
Author(s):  
Benjamin Fritz ◽  
Gábor Horváth ◽  
Ruben Hünig ◽  
Ádám Pereszlényi ◽  
Ádám Egri ◽  
...  

Many insect species rely on the polarization properties of object-reflected light for vital tasks like water or host detection. Unfortunately, typical glass-encapsulated photovoltaic modules, which are expected to cover increasingly large surfaces in the coming years, inadvertently attract various species of water-seeking aquatic insects by the horizontally polarized light they reflect. Such polarized light pollution can be extremely harmful to the entomofauna if polarotactic aquatic insects are trapped by this attractive light signal and perish before reproduction, or if they lay their eggs in unsuitable locations. Textured photovoltaic cover layers are usually engineered to maximize sunlight-harvesting, without taking into consideration their impact on polarized light pollution. The goal of the present study is therefore to experimentally and computationally assess the influence of the cover layer topography on polarized light pollution. By conducting field experiments with polarotactic horseflies (Diptera: Tabanidae) and a mayfly species (Ephemeroptera: Ephemera danica), we demonstrate that bioreplicated cover layers (here obtained by directly copying the surface microtexture of rose petals) were almost unattractive to these species, which is indicative of reduced polarized light pollution. Relative to a planar cover layer, we find that, for the examined aquatic species, the bioreplicated texture can greatly reduce the numbers of landings. This observation is further analyzed and explained by means of imaging polarimetry and ray-tracing simulations. The results pave the way to novel photovoltaic cover layers, the interface of which can be designed to improve sunlight conversion efficiency while minimizing their detrimental influence on the ecology and conservation of polarotactic aquatic insects.

2016 ◽  
Vol 20 (4) ◽  
pp. 663-675 ◽  
Author(s):  
Dénes Száz ◽  
Dávid Mihályi ◽  
Alexandra Farkas ◽  
Ádám Egri ◽  
András Barta ◽  
...  

2019 ◽  
Vol 6 (10) ◽  
pp. 191119 ◽  
Author(s):  
Gábor Horváth ◽  
Ádám Pereszlényi ◽  
Tímea Tóth ◽  
Szabolcs Polgár ◽  
Imre M. Jánosi

From a large distance tabanid flies may find their host animal by means of its shape, size, motion, odour, radiance and degree of polarization of host-reflected light. After alighting on the host, tabanids may use their mechano-, thermo-, hygro- and chemoreceptors to sense the substrate characteristics. Female tabanids prefer to attack sunlit against shady dark host animals, or dark against bright hosts for a blood meal, the exact reasons for which are unknown. Since sunlit darker surfaces are warmer than shady ones or sunlit/shady brighter surfaces, the differences in surface temperatures of dark and bright as well as sunlit and shady hosts may partly explain their different attractiveness to tabanids. We tested this observed warmth preference in field experiments, where we compared the attractiveness to tabanids ( Tabanus tergestinus ) of a warm and a cold shiny black barrel imitating dark hosts with the same optical characteristics. Using imaging polarimetry, thermography and Schlieren imaging, we measured the optical and thermal characteristics of both barrels and their small-scale models. We recorded the number of landings on these targets and measured the time periods spent on them. Our study revealed that T. tergestinus tabanid flies prefer sunlit warm shiny black targets against sunlit or shady cold ones with the same optical characteristics. These results support our new hypothesis that a blood-seeking female tabanid prefers elevated temperatures, partly because her wing muscles are more rapid and her nervous system functions better (due to faster conduction velocities and synaptic transmission of signals) in a warmer microclimate, and thus, she can avoid the parasite-repelling reactions of host animals by a prompt take-off.


2017 ◽  
Vol 30 (4) ◽  
pp. 374-384 ◽  
Author(s):  
Ádám Egri ◽  
Ádám Pereszlényi ◽  
Alexandra Farkas ◽  
Gábor Horváth ◽  
Károly Penksza ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (7) ◽  
pp. e103339 ◽  
Author(s):  
Miklos Blaho ◽  
Tamas Herczeg ◽  
Gyorgy Kriska ◽  
Adam Egri ◽  
Denes Szaz ◽  
...  

2009 ◽  
Vol 7 (6) ◽  
pp. 317-325 ◽  
Author(s):  
Gábor Horváth ◽  
György Kriska ◽  
Péter Malik ◽  
Bruce Robertson

2009 ◽  
Vol 73 (6) ◽  
pp. 1027-1032 ◽  
Author(s):  
F. Nestola ◽  
A. Guastoni ◽  
L. Bindi ◽  
L. Secco

AbstractDalnegroite, ideally Tl4Pb2(As12Sb8)Σ20S34, is a new mineral from Lengenbach, Binntal, Switzerland. It occurs as anhedral to subhedral grains up to 200 μm across, closely associated with realgar, pyrite, Sb-rich seligmanite in a gangue of dolomite. Dalnegroite is opaque with a submetallic lustre and shows a brownish-red streak. It is brittle; the Vickers hardness (VHN25) is 87 kg mm-2(range: 69—101) (Mohs hardness ∼3—3½). In reflected light, dalnegroite is highly bireflectant and weakly pleochroic, from white to a slightly greenish-grey. In cross-polarized light, it is highly anisotropic with bluish to green rotation tints and red internal reflections.According to chemical and X-ray diffraction data, dalnegroite appears to be isotypic with chabournéite, Tl5-xPb2x(Sb,As)21-xS34. It is triclinic, probable space groupP1, witha= 16.217(7) Å,b= 42.544(9) Å,c= 8.557(4) Å, α = 95.72(4)°, β = 90.25(4)°, γ = 96.78(4)°,V= 5832(4) Å3,Z= 4.The nine strongest powder-diffraction lines [d(Å) (I/I0) (hkl)] are: 3.927 (100) (10 0); 3.775 (45) (22); 3.685 (45) (60); 3.620 (50) (440); 3.124 (50) (2); 2.929 (60) (42); 2.850 (70) (42); 2.579 (45) (02); 2.097 (60) (024). The mean of 11 electron microprobe analyses gave elemental concentrations as follows: Pb 10.09(1) wt.%, Tl 20.36(1), Sb 23.95(1), As 21.33(8), S 26.16(8), totalling 101.95 wt.%, corresponding to Tl4.15Pb2.03(As11.86Sb8.20)S34. The new mineral is named for Alberto Dal Negro, Professor in Mineralogy and Crystallography at the University of Padova since 1976.


2013 ◽  
Vol 103 (6) ◽  
pp. 665-674 ◽  
Author(s):  
Á. Egri ◽  
M. Blahó ◽  
D. Száz ◽  
G. Kriska ◽  
J. Majer ◽  
...  

AbstractHost-seeking female tabanid flies, that need mammalian blood for the development of their eggs, can be captured by the classic canopy trap with an elevated shiny black sphere as a luring visual target. The design of more efficient tabanid traps is important for stock-breeders to control tabanids, since these blood-sucking insects can cause severe problems for livestock, especially for horse- and cattle-keepers: reduced meat/milk production in cattle farms, horses cannot be ridden, decreased quality of hides due to biting scars. We show here that male and female tabanids can be caught by a novel, weather-proof liquid-filled black tray laid on the ground, because the strongly and horizontally polarized light reflected from the black liquid surface attracts water-seeking polarotactic tabanids. We performed field experiments to reveal the ideal elevation of the liquid trap and to compare the tabanid-capturing efficiency of three different traps: (1) the classic canopy trap, (2) the new polarization liquid trap, and (3) the combination of the two traps. In field tests, we showed that the combined trap captures 2.4–8.2 times more tabanids than the canopy trap alone. The reason for the larger efficiency of the combined trap is that it captures simultaneously the host-seeking female and the water-seeking male and female tabanids. We suggest supplementing the traditional canopy trap with the new liquid trap in order to enhance the tabanid-capturing efficiency.


2011 ◽  
Vol 320 ◽  
pp. 377-381 ◽  
Author(s):  
Jin Dong Xin ◽  
Qing Gang Liu ◽  
Chao Liu ◽  
Ting Ting Li ◽  
Shi Yi Liu

It is found that the phase position of p-component of reflected light changes with the metal film thickness, while the phase position of s-component almost doesn’t change in the Surface Plasmon Resonance effect. S-polarized light is taken as reference and interferometry is adopted to turn the change of the phase position into the change of interference fringes position in the paper, and the film thickness can be derived from it. The simulation results indicated that, through making use of piecewise quadratic fitting on the phase data, the inaccuracy with the range of film thickness is between 30 and 80 nanometers is not more than 0.33 nm.


Sign in / Sign up

Export Citation Format

Share Document