scholarly journals MeshCut data augmentation for deep learning in computer vision

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243613
Author(s):  
Wei Jiang ◽  
Kai Zhang ◽  
Nan Wang ◽  
Miao Yu

To solve overfitting in machine learning, we propose a novel data augmentation method called MeshCut, which uses a mesh-like mask to segment the whole image to achieve more partial diversified information. In our experiments, this strategy outperformed the existing augmentation strategies and achieved state-of-the-art results in a variety of computer vision tasks. MeshCut is also an easy-to-implement strategy that can efficiently improve the performance of the existing convolutional neural network models by a good margin without careful hand-tuning. The performance of such a strategy can be further improved by incorporating it into other augmentation strategies, which can make MeshCut a promising baseline strategy for future data augmentation algorithms.

2019 ◽  
Author(s):  
J. Christopher D. Terry ◽  
Helen E. Roy ◽  
Tom A. August

AbstractThe accurate identification of species in images submitted by citizen scientists is currently a bottleneck for many data uses. Machine learning tools offer the potential to provide rapid, objective and scalable species identification for the benefit of many aspects of ecological science. Currently, most approaches only make use of image pixel data for classification. However, an experienced naturalist would also use a wide variety of contextual information such as the location and date of recording.Here, we examine the automated identification of ladybird (Coccinellidae) records from the British Isles submitted to the UK Ladybird Survey, a volunteer-led mass participation recording scheme. Each image is associated with metadata; a date, location and recorder ID, which can be cross-referenced with other data sources to determine local weather at the time of recording, habitat types and the experience of the observer. We built multi-input neural network models that synthesise metadata and images to identify records to species level.We show that machine learning models can effectively harness contextual information to improve the interpretation of images. Against an image-only baseline of 48.2%, we observe a 9.1 percentage-point improvement in top-1 accuracy with a multi-input model compared to only a 3.6% increase when using an ensemble of image and metadata models. This suggests that contextual data is being used to interpret an image, beyond just providing a prior expectation. We show that our neural network models appear to be utilising similar pieces of evidence as human naturalists to make identifications.Metadata is a key tool for human naturalists. We show it can also be harnessed by computer vision systems. Contextualisation offers considerable extra information, particularly for challenging species, even within small and relatively homogeneous areas such as the British Isles. Although complex relationships between disparate sources of information can be profitably interpreted by simple neural network architectures, there is likely considerable room for further progress. Contextualising images has the potential to lead to a step change in the accuracy of automated identification tools, with considerable benefits for large scale verification of submitted records.


2021 ◽  
Vol 23 (07) ◽  
pp. 977-994
Author(s):  
Josmy Mathew ◽  
◽  
Dr. N. Srinivasan ◽  

Deep Learning is an area of machine learning which, because of its capability to handle a large quantity of data, has demonstrated amazing achievements in each field, notably in biomedicine. Its potential and abilities were evaluated and utilised with an effective prognosis in the identification of brain tumours with MRI pictures. The diagnosis of MRI images by computer-aided brain tumours includes tumour identification, segmentation and classification. Many types of research have concentrated in recent years on conventional or basic machine learning approaches in the detection of brain tumours. Throughout this overview, we offer a comprehensive assessment of the surveys that have been reported so far and the current approaches for detecting tumours. Our review examines the major processes in deep learning approaches for detecting brain tumours including preprocessing, extraction of features and classification and their performance and limitations. We also explore state-of-the-art neural network models to identify brain tumours through extensive trials with and without data augmentation. This review also discusses existing data sets for brain tumour detection assessments.


2020 ◽  
pp. 1-22 ◽  
Author(s):  
D. Sykes ◽  
A. Grivas ◽  
C. Grover ◽  
R. Tobin ◽  
C. Sudlow ◽  
...  

Abstract Using natural language processing, it is possible to extract structured information from raw text in the electronic health record (EHR) at reasonably high accuracy. However, the accurate distinction between negated and non-negated mentions of clinical terms remains a challenge. EHR text includes cases where diseases are stated not to be present or only hypothesised, meaning a disease can be mentioned in a report when it is not being reported as present. This makes tasks such as document classification and summarisation more difficult. We have developed the rule-based EdIE-R-Neg, part of an existing text mining pipeline called EdIE-R (Edinburgh Information Extraction for Radiology reports), developed to process brain imaging reports, (https://www.ltg.ed.ac.uk/software/edie-r/) and two machine learning approaches; one using a bidirectional long short-term memory network and another using a feedforward neural network. These were developed on data from the Edinburgh Stroke Study (ESS) and tested on data from routine reports from NHS Tayside (Tayside). Both datasets consist of written reports from medical scans. These models are compared with two existing rule-based models: pyConText (Harkema et al. 2009. Journal of Biomedical Informatics42(5), 839–851), a python implementation of a generalisation of NegEx, and NegBio (Peng et al. 2017. NegBio: A high-performance tool for negation and uncertainty detection in radiology reports. arXiv e-prints, p. arXiv:1712.05898), which identifies negation scopes through patterns applied to a syntactic representation of the sentence. On both the test set of the dataset from which our models were developed, as well as the largely similar Tayside test set, the neural network models and our custom-built rule-based system outperformed the existing methods. EdIE-R-Neg scored highest on F1 score, particularly on the test set of the Tayside dataset, from which no development data were used in these experiments, showing the power of custom-built rule-based systems for negation detection on datasets of this size. The performance gap of the machine learning models to EdIE-R-Neg on the Tayside test set was reduced through adding development Tayside data into the ESS training set, demonstrating the adaptability of the neural network models.


2021 ◽  
Vol 2042 (1) ◽  
pp. 012002
Author(s):  
Roberto Castello ◽  
Alina Walch ◽  
Raphaël Attias ◽  
Riccardo Cadei ◽  
Shasha Jiang ◽  
...  

Abstract The integration of solar technology in the built environment is realized mainly through rooftop-installed panels. In this paper, we leverage state-of-the-art Machine Learning and computer vision techniques applied on overhead images to provide a geo-localization of the available rooftop surfaces for solar panel installation. We further exploit a 3D building database to associate them to the corresponding roof geometries by means of a geospatial post-processing approach. The stand-alone Convolutional Neural Network used to segment suitable rooftop areas reaches an intersection over union of 64% and an accuracy of 93%, while a post-processing step using building database improves the rejection of false positives. The model is applied to a case study area in the canton of Geneva and the results are compared with another recent method used in the literature to derive the realistic available area.


2019 ◽  
Author(s):  
Emmanuel L.C. de los Santos

ABSTRACTSignificant progress has been made in the past few years on the computational identification biosynthetic gene clusters (BGCs) that encode ribosomally synthesized and post-translationally modified peptides (RiPPs). This is done by identifying both RiPP tailoring enzymes (RTEs) and RiPP precursor peptides (PPs). However, identification of PPs, particularly for novel RiPP classes remains challenging. To address this, machine learning has been used to accurately identify PP sequences. However, current machine learning tools have limitations, since they are specific to the RiPP-class they are trained for, and are context-dependent, requiring information about the surrounding genetic environment of the putative PP sequences. NeuRiPP overcomes these limitations. It does this by leveraging the rich data set of high-confidence putative PP sequences from existing programs, along with experimentally verified PPs from RiPP databases. NeuRiPP uses neural network models that are suitable for peptide classification with weights trained on PP datasets. It is able to identify known PP sequences, and sequences that are likely PPs. When tested on existing RiPP BGC datasets, NeuRiPP is able to identify PP sequences in significantly more putative RiPP clusters than current tools, while maintaining the same HMM hit accuracy. Finally, NeuRiPP was able to successfully identify PP sequences from novel RiPP classes that are recently characterized experimentally, highlighting its utility in complementing existing bioinformatics tools.


2020 ◽  
Vol 34 (09) ◽  
pp. 13693-13696
Author(s):  
Emma Strubell ◽  
Ananya Ganesh ◽  
Andrew McCallum

The field of artificial intelligence has experienced a dramatic methodological shift towards large neural networks trained on plentiful data. This shift has been fueled by recent advances in hardware and techniques enabling remarkable levels of computation, resulting in impressive advances in AI across many applications. However, the massive computation required to obtain these exciting results is costly both financially, due to the price of specialized hardware and electricity or cloud compute time, and to the environment, as a result of non-renewable energy used to fuel modern tensor processing hardware. In a paper published this year at ACL, we brought this issue to the attention of NLP researchers by quantifying the approximate financial and environmental costs of training and tuning neural network models for NLP (Strubell, Ganesh, and McCallum 2019). In this extended abstract, we briefly summarize our findings in NLP, incorporating updated estimates and broader information from recent related publications, and provide actionable recommendations to reduce costs and improve equity in the machine learning and artificial intelligence community.


2021 ◽  
Author(s):  
V.Y. Ilichev ◽  
I.V. Chukhraev

The article is devoted to the consideration of one of the areas of application of modern and promising computer technology – machine learning. This direction is based on the creation of models consisting of neural networks and their deep learning. At present, there is a need to generate new, not yet existing, images of objects of different types. Most often, text files or images act as such objects. To achieve a high quality of results, a generation method based on the adversarial work of two neural networks (generator and discriminator) was once worked out. This class of neural network models is distinguished by the complexity of topography, since it is necessary to correctly organize the structure of neural layers in order to achieve maximum accuracy and minimal error. The described program is created using the Python language and special libraries that extend the set of commands for performing additional functions: working with neural networks Keras (main library), integrating with the operating system Os, outputting graphs Matplotlib, working with data arrays Numpy and others. A description is given of the type and features of each neural layer, as well as the use of library connection functions, input of initial data, compilation and training of the obtained model. Next, the implementation of the procedure for outputting the results of evaluating the errors of the generator and discriminator and the accuracy achieved by the model depending on the number of cycles (eras) of its training is considered. Based on the results of the work, conclusions were drawn and recommendations were made for the use and development of the considered methodology for creating and training generative and adversarial neural networks. Studies have demonstrated the procedure for operating with comparatively simple and accessible, but effective means of a universal Python language with the Keras library to create and teach a complex neural network model. In fact, it has been proved that the use of this method allows to achieve high-quality results of machine learning, previously achievable only when using special software systems for working with neural networks.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1938
Author(s):  
Linling Qiu ◽  
Han Li ◽  
Meihong Wang ◽  
Xiaoli Wang

With its increasing incidence, cancer has become one of the main causes of worldwide mortality. In this work, we mainly propose a novel attention-based neural network model named Gated Graph ATtention network (GGAT) for cancer prediction, where a gating mechanism (GM) is introduced to work with the attention mechanism (AM), to break through the previous work’s limitation of 1-hop neighbourhood reasoning. In this way, our GGAT is capable of fully mining the potential correlation between related samples, helping for improving the cancer prediction accuracy. Additionally, to simplify the datasets, we propose a hybrid feature selection algorithm to strictly select gene features, which significantly reduces training time without affecting prediction accuracy. To the best of our knowledge, our proposed GGAT achieves the state-of-the-art results in cancer prediction task on LIHC, LUAD, KIRC compared to other traditional machine learning methods and neural network models, and improves the accuracy by 1% to 2% on Cora dataset, compared to the state-of-the-art graph neural network methods.


Sign in / Sign up

Export Citation Format

Share Document