scholarly journals Focused ultrasound of the caudal vena cava in dogs with cavitary effusions or congestive heart failure: A prospective, observational study

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0252544
Author(s):  
Yen-Yu Chou ◽  
Jessica L. Ward ◽  
Lara Z. Barron ◽  
Shane D. Murphy ◽  
Melissa A. Tropf ◽  
...  

Introduction Ultrasonographic indices of the inferior vena cava are useful for predicting right heart filling pressures in people. Objectives To determine whether ultrasonographic indices of caudal vena cava (CVC) differ between dogs with right-sided CHF (R-CHF), left-sided CHF (L-CHF), and noncardiac causes of cavitary effusion (NC). Materials and methods 113 dogs diagnosed with R-CHF (n = 51), L-CHF (30), or NC effusion (32) were enrolled. Seventeen of the R-CHF dogs had pericardial effusion and tamponade. Focused ultrasound was performed prospectively to obtain 2-dimensional and M-mode subxiphoid measures of CVC maximal and minimal size (CVCmax and CVCmin), CVCmax indexed to aortic dimension (CVC:Ao), and CVC collapsibility index (CVC-CI). Variables were compared between study groups using Kruskal-Wallis and Dunn’s-Bonferroni testing, and receiver operating characteristics curves were used to assess sensitivity and specificity. Results All sonographic CVC indices were significantly different between R-CHF and NC dogs (P < 0.001). Variables demonstrating the highest diagnostic accuracy for discriminating R-CHF versus NC were CVC-CI <33% in 2D (91% sensitive and 96% specific) and presence of hepatic venous distension (84% sensitive and 90% specific). L-CHF dogs had higher CVC:Ao and lower CVC-CI compared to NC dogs (P = 0.016 and P = 0.043 in 2D, respectively) but increased CVC-CI compared to the R-CHF group (P < 0.001). Conclusions Ultrasonographic indices of CVC size and collapsibility differed between dogs with R-CHF compared to NC causes of cavitary effusions. Dogs with L-CHF have CVC measurements intermediate between R-CHF and NC dogs.

Author(s):  
Tomas Zaoral ◽  
Peter Kordos ◽  
Marketa Nowakova ◽  
Borek Travnicek ◽  
Jana Zapletalova ◽  
...  

Abstract Purpose To determine normative data for the inferior vena cava (VCI) diameter in euvolemic children and its correlation with different somatic parameters in a pediatric population at one center in Europe. Materials and Methods This prospective observational study enrolled healthy children aged 4 weeks to 18y that visited our outpatient clinic. Weight, height, body surface area, and age were recorded. The children were grouped according to weight, as follows (80 children/group): < 10 kg, 10–19.9 kg, 20–29.9 kg, 30–59.9 kg, and 60–90 kg. Children were placed in a supine position and, during quiet respiration, the maximum and minimum VCI diameters were measured with M-mode ultrasonography. The collapsibility index (CI) was also automatically calculated for each subject: CI = [VCI maximum (expiratory) diameter – VCI minimum (inspiratory) diameter]/VCI maximum (expiratory) diameter. Results From May 2016 through November 2018 we retrieved data for 415 children that underwent VCI diameter evaluations. 400 children were included (mean age: 7.8y ± 5.8, mean weight: 32 kg ± 24.4, 46 % girls). The VCImax and the VCImin were significantly correlated with age (r = 0.867, p < 0.001, r = 0.797, p < 0.001), height (r = 0.840, p < 0.001, r = 0.772, p < 0.001), weight (r = 0.858, p < 0.001, r = 0.809, p < 0.001), and BSA (r = 0.878, p < 0.001, r = 0.817, p < 0.001). Correlations between the CI and age, weight, height, and BSA were not statistically significant. Conclusion This prospective study provided reference values for sonographic measurements of VCI diameters in euvolemic children and might greatly assist in assessing fluid status in sick children.


2018 ◽  
Vol 2018 ◽  
pp. 1-3 ◽  
Author(s):  
Sneha R. Gadi ◽  
Benjamin K. Ruth ◽  
Alan Johnson ◽  
Sula Mazimba ◽  
Younghoon Kwon

Inferior vena cava (IVC) diameter and respirophasic variation are commonly used echocardiographic indices to estimate right atrial pressure. While dilatation of the IVC and reduced collapsibility have traditionally been associated with elevated right heart filling pressures, the significance of isolated IVC dilatation in the absence of raised filling pressures remains poorly understood. We present a case of an asymptomatic 28-year-old male incidentally found to have IVC dilatation, reduced inspiratory collapse, and normal right heart pressures.


1992 ◽  
Vol 263 (5) ◽  
pp. R1071-R1077 ◽  
Author(s):  
D. H. Carr ◽  
D. B. Jennings ◽  
T. N. Thrasher ◽  
L. C. Keil ◽  
D. J. Ramsay

We have reported that increased left heart pressure inhibits increases in plasma renin activity (PRA), arginine vasopressin (AVP), and cortisol during arterial hypotension. The goal of this study was to determine whether increases in right heart pressure also inhibited hormonal responses to hypotension. Seven dogs were chronically instrumented with inflatable cuffs around the ascending aorta (AA), the pulmonary artery (PA), and the thoracic inferior vena cava (IVC), as well as with catheters in both atria, the abdominal aorta, and vena cava. The IVC, the PA, and the AA cuffs were inflated on different days to cause step reductions in mean arterial pressure (MAP) of 5, 10, 20, and 30% below control MAP. Graded constriction of the AA caused large increases in left atrial pressure and plasma atrial natriuretic peptide (ANP), but had no effect on plasma AVP or cortisol and caused only a small increase in PRA at the maximal reduction of MAP. Constriction of the IVC reduced both atrial pressures and plasma ANP, but stimulated increases in PRA, AVP, and cortisol. Constriction of the PA increased right atrial pressure and plasma ANP and caused increases in plasma AVP and cortisol that were similar to responses during IVC constriction, but the PRA response was only half (P < 0.05). These results indicate that increasing pressure on the right side of the heart can attenuate the PRA response to hypotension, and suggest that the inhibition is mediated by the rise in plasma ANP.


2020 ◽  
Vol 5 (1) ◽  

Fluid therapy is an essential component part management of critically ill patients. Proper estimation of the amount of needed fluids is of great importance due to the well-established adverse effects of marked negative and positive fluids balance. Central venous pressure has been widely used by ICU physicians for volume status assessment. Several methods have been postulated for volume status assessment, among which is the inferior vena cava collapsibility index. As the inferior vena cava is a thin-walled capacitance vessel that adjusts to the body’s volume status by changing its diameter depending on the total body fluid volume. Giving the fact that bed-side ultrasonographic measurement of inferior vena cava diameters is an available, non-invasive, reproducible and quiet easy-to-learn technique, it can provide a safe and quiet reliable replacement of central venous pressure measurement for assessment of volume status assessment. The aim of this study was to find statistical correlation between central venous pressure and caval index, as a step towards validating the above mentioned replacement. 86 critically ill patients from ICU population were enrolled. Simultaneous measurements of central venous pressure and inferior vena cava collapsibility index were observed and recorded on four sessions. Patients were also grouped based on their mode of ventilation and central venous pressure values in order to compare the strength of correlation between various populations. The results showed that Inferior vena cava collapsibility index has significant inverse correlation with CVP value (r= -85, p value ˂0.001 at 95% CI) and it better correlated with mean arterial blood pressure and lactate clearance as compared to central venous pressure. However it correlated better with CVP in spontaneously breathing patients (r= -0.86, p value ˂0.001) than in mechanically ventilated patients (r= -0.84, p value ˂0.001). Inferior vena cava collapsibility index has shown to correlate better with CVP value in lower values (˂ 10 cmH2O) (r= -0.8, p value ˂0.001) than in higher values (≥ 10 cmH2O) (r= -0.6, p value ˂0.001). In addition, an inferior vena caval collapsibility index cut-off value of 29% was shown to discriminate between CVP values ˂10 cmH2O and values ≥10 cmH2O with high Sensitivity (88.6%) and specificity (80.4%). In conclusion, inferior vena cava collapsibility index has a strong inverse relationship with central venous pressure which is more pronounced at low central venous pressure values. Point-of-care ultrasonographically-measured inferior vena cava collapsibility index is very likely to be a good alternative to central venous pressure measurement with a high degree of precision and reproducibility. However, Wide scale studies are needed to validate its use in different patient populations.


2021 ◽  
pp. 20200183
Author(s):  
Valentina Vespro ◽  
Stefano Fusco ◽  
Anna Maria Ierardi ◽  
Viviana Grassi ◽  
Ilenia D’Alessio ◽  
...  

Aortocaval fistula (ACF) is a rare complication of abdominal aortic aneurysm (AAA), occurring in less than 1% of all AAAs. Paradoxical embolism can rarely be associated with ACF, pulmonary embolism may originate from dislodgment of thrombotic material from the AAA in the inferior vena cava (IVC) through the ACF. We report a case of a patient admitted to the emergency department with abdominal pain and shortness of breath who immediately underwent thoraco-abdominal CT. Imaging allowed a prompt pre-operative diagnosis of an ACF between an AAA and the IVC, also identifying CT signs of right heart overload and the presence of a paradoxical pulmonary embolism.


2021 ◽  
pp. 10-12
Author(s):  
N. Senthil kumar ◽  
Jeya Pratheef Muthiah

INTRODUCTION: There are various techniques for assessing the uid status such as clinical examination, central venous pressure (CVP) measurement, biochemical markers, bio impedance, continuous blood volume measurement, or sonographic inferior vena cava (IVC) diameter assessment. Sonographic evaluation of the IVC and Aorta diameter and its usefulness in evaluating the volume status are studied and documented. The sonographic evaluation of the IVC & Aorta can predict the volume status, this tool can assist anesthetist in rapid diagnosis and prompt resuscitation of patients developing TURP syndrome AIM OF THE STUDY: The aim & objective of this study is to assess the correlation of Caval Aorta index with CVP in intravascular volume assessment in patients undergoing endoscopic Trans Urethral Resection of Prostate (TURP) MATERIALS AND METHODS: The study is carried out in the Department of Anaesthesiology involving Department of Urology in Kanyakumari Government Medical College from January 2018 to June 2019. It is a Prospective observational study. To measure the IVC diameter USG machine probe is placed in the sub-xiphoid region to visualize the conuence of the hepatic veins draining the IVC. The maximum internal AP diameter of the Aorta(Ao) and maximum internal anterior-posterior (AP) diameter of the IVC is measured in the longitudinal plane. Fluid status will be measured by CVP and IVC/Ao index recorded before neuraxial block, after preload, at 5 min after intrathecal block, resection time at 0 min, every 15 min during the rst 30 min, then every 30 min, until the end of surgery. Outcome: Incidence of hypotension after spinal anesthesia in a cesarean section RESULTS: The mean IVC diameter at pre-operative is 15.20±1.42, and at 60 min, 75 min were 19.39±1.92, 20.03±1.76 which suggests that the size and shape of the inferior vena cava (IVC) is correlated to the CVP and circulating blood volume. In my study the mean Aortic diameter at 60 min, 75 min were 20.30±1.01 and 19.81±1.06 which is same as the preoperative level (19.72±1.18) and diameter. The mean CVP at pre-operative is 4.57±0.73, mean CVP at 60 min, 75 min were 7.57±0.82, 8.11±0.78 which denotes that CVP increases as the intravascular volume status increases. In our study mean IVC/Aortic index at pre-operative is 0.77±0.05 and the mean IVC/Aortic index at 15min, 30 min, 60 min, 75 min were 0.87±0.03, 0.90±0.04, 0.95±0.06, 1.01±0.05 which increases signicantly in increasing intravascular volume. The strong correlation between these two variable with Pearson formula ranging from 0.450-0.900. CONCLUSION: As Sonographic caval Ao index is very well correlated with CVP , IVC/Ao index is useful for the evaluation of preoperative and intraoperative volume status, especially in major surgeries with marked uid shift or blood loss and had the advantage of being noninvasive, safe, quick, and easy technique with no complications.


2019 ◽  
Vol 26 (1) ◽  
pp. 25
Author(s):  
AdemolaA Adeyekun ◽  
OguguaAnnie Ifijeh ◽  
AdenikeO Akhigbe ◽  
MohammedMunir Abubakar

Sign in / Sign up

Export Citation Format

Share Document