scholarly journals Lipid profiling suggests species specificity and minimal seasonal variation in Pacific Green and Hawksbill Turtle plasma

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253916
Author(s):  
Chelsea E. Clyde-Brockway ◽  
Christina R. Ferreira ◽  
Elizabeth A. Flaherty ◽  
Frank V. Paladino

In this study, we applied multiple reaction monitoring (MRM)-profiling to explore the relative ion intensity of lipid classes in plasma samples from sea turtles in order to profile lipids relevant to sea turtle physiology and investigate how dynamic ocean environments affect these profiles. We collected plasma samples from foraging green (Chelonia mydas, n = 28) and hawksbill (Eretmochelys imbricata, n = 16) turtles live captured in North Pacific Costa Rica in 2017. From these samples, we identified 623 MRMs belonging to 10 lipid classes (sphingomyelin, phosphatidylcholine, free fatty acid, cholesteryl ester, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, phosphatidylethanolamine, ceramide, and triacylglyceride) and one metabolite group (acyl-carnitine) present in sea turtle plasma. The relative ion intensities of most lipids (80%) were consistent between species, across seasons, and were not correlated to body size or estimated sex. Of the differences we observed, the most pronounced was the differences in relative ion intensity between species. We identified 123 lipids that had species-specific relative ion intensities. While some of this variability is likely due to green and hawksbill turtles consuming different food items, we found indications of a phylogenetic component as well. Of these, we identified 47 lipids that varied by season, most belonging to the structural phospholipid classes. Overall, more lipids (n = 39) had higher relative ion intensity in the upwelling (colder) season compared to the non-upwelling season (n = 8). Further, we found more variability in hawksbill turtles than green turtles. Here, we provide the framework in which to apply future lipid profiling in the assessment of health, physiology, and behavior in endangered sea turtles.

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1490
Author(s):  
Amanda James ◽  
Annie Page-Karjian ◽  
Kate E. Charles ◽  
Jonnel Edwards ◽  
Christopher R. Gregory ◽  
...  

Chelonid alphaherpesvirus 5 (ChHV5) is strongly associated with fibropapillomatosis, a neoplastic disease of sea turtles that can result in debilitation and mortality. The objectives of this study were to examine green (Chelonia mydas), hawksbill (Eretmochelys imbricata), and leatherback (Dermochelys coriacea) sea turtles in Grenada, West Indies, for fibropapillomatosis and to utilize ChHV5-specific PCR, degenerate herpesvirus PCR, and serology to non-invasively evaluate the prevalence of ChHV5 infection and exposure. One-hundred and sixty-seven turtles examined from 2017 to 2019 demonstrated no external fibropapilloma-like lesions and no amplification of ChHV5 DNA from whole blood or skin biopsies. An ELISA performed on serum detected ChHV5-specific IgY in 18/52 (34.6%) of green turtles tested. In 2020, an adult, female green turtle presented for necropsy from the inshore waters of Grenada with severe emaciation and cutaneous fibropapillomas. Multiple tumors tested positive for ChHV5 by qPCR, providing the first confirmed case of ChHV5-associated fibropapillomatosis in Grenada. These results indicate that active ChHV5 infection is rare, although viral exposure in green sea turtles is relatively high. The impact of fibropapillomatosis in Grenada is suggested to be low at the present time and further studies comparing host genetics and immunologic factors, as well as examination into extrinsic factors that may influence disease, are warranted.


2021 ◽  
Vol 16 (4) ◽  
pp. 521-538
Author(s):  
Raísa da Silva Costa Rêgo ◽  
Eric Azevedo Cazetta ◽  
Caio Henrique Gonçalves Cutrim ◽  
Amanda Soares Miranda ◽  
Ana Paula Albano Araújo ◽  
...  

The south-western region of the Atlantic Ocean has feeding and nesting areas for the five species of sea turtles registered in Brazil, which are in different degrees of extinction threat, mainly due to anthropogenic factors. Fishing and the ingestion of solid waste, were identified as causing stranding and the mortality of sea turtles. In this work, data from the monitoring of beaches in the Municipalities of Macaé and Rio das Ostras, important oil zone in Brazil, in the north-central region of the State of Rio de Janeiro, were used in order to analyse the effects of seasonality on the sea turtle stranding. The monitoring was carried out daily from September 2017 to June 2019, in a study area covering 23.8 km long beach. Stranding data were obtained from active (n = 126) and passive (n = 66) monitoring of beaches and included the records of Chelonia mydas (n = 151), Caretta caretta (n = 23), Lepidochelys olivacea (n = 14), Dermochelys coriacea (n = 2) and Eretmochelys imbricata (n = 1). The largest stranding record occurred in the summer (n = 61) and spring (n = 60), a period compatible with the reproductive season of the species. The results obtained in this study emphasise the importance of the analysis of strandings of sea turtles, which provide relevant data on the biology of the group, the intra and interspecific dynamics and the state of conservation of these animals.


1998 ◽  
Vol 49 (5) ◽  
pp. 409 ◽  
Author(s):  
A. R. Pople ◽  
A. N. Gordon ◽  
J. Ng

The concentrations of some or all of arsenic (As), cadmium (Cd), mercury (Hg), selenium (Se) and zinc (Zn) were determined in the livers and kidneys of 50 stranded sea turtles (38 Chelonia mydas, eight Caretta caretta, three Eretmochelys imbricata, one Lepidochelys olivacea) from the Moreton Bay region of south-eastern Queensland, Australia. Concentrations of Cd, Se and Zn in the kidney tended to decrease with age, whereas concentrations of Zn in the liver tended to increase. Concentrations of Cd in all sea turtle species (1.7–75.9 µg g-1 wet weight) were amongst the highest recorded for marine vertebrates globally. Although there was no obvious association between metal concentrations and particular diseases in C. mydas, the high concentrations of Cd found in edible turtle tissues may pose a threat to the health of indigenous people whose diet includes C. mydas.


2016 ◽  
Vol 3 (1) ◽  
pp. 20-23
Author(s):  
Sergio Escobar-Lasso ◽  
Luis Fonseca ◽  
Wilbert N. Villachica ◽  
Hansel Herrera ◽  
Roldán A. Valverde ◽  
...  

Jaguars have been recorded preying on adult female sea turtles on their nesting beaches in Costa Rica, Guyana, Mexico and Suriname (Fretey 1977, Autar 1994, Cuevas et al. 2014, Guildera et al. 2015). Jaguars prey on Green (Chelonia mydas), Olive Ridley (Lepidochelys olivacea), Hawksbill (Eretmochelys imbricata), and Leatherback (Dermochelys coriacea) sea turtles (see Fretey 1977, Autar 1994, Carrillo et al. 1994, Chinchilla 1997, Tröeng 2000, Heithaus et al. 2008, Veríssimo et al. 2012, Arroyo-Arce et al. 2014, Cuevas et al. 2014, Arroyo-Arce & Salom-Pérez 2015, Guildera et al. 2015). The capture effort and risk of injury associated with the predation of nesting sea turtles is expected to be lower relative to other prey species in the jaguar’s diet (Cavalcanti & Gese 2010). Additionally, they can be key resources when other pr ey availability is low (Veríssimo et al. 2012).


Oryx ◽  
1994 ◽  
Vol 28 (1) ◽  
pp. 51-61 ◽  
Author(s):  
Berthin Rakotonirina ◽  
Andrew Cooke

Five species of sea turtles are known from Madagascar's coastal waters. Fishermen on the western and south-western coasts take green turtle Chelonia mydas, loggerhead turtle Caretta caretta and olive ridley Lepidochelys olivacea for their meat. The hawksbill turtle Eretmochelys imbricata is taken mainly for its shell and for making stuffed specimens while the leatherback Dermochelys coriacea is seldom caught. Anecdotal evidence of fishermen and dealers in turtle products, measurement of captured animals and personal observations of the authors all point to declines in numbers and average size for green and hawksbill turtles, coupled with marked declines in nesting rates for these and the olive ridley.


2021 ◽  
Vol 32 ◽  
pp. 19-33
Author(s):  
Ryan Chabot ◽  
Ryan Welsh ◽  
Cody Mott ◽  
Jeffrey Guertin ◽  
Brian Shamblin ◽  
...  

Coastal waters of Florida’s Big Bend, Gulf of Mexico (GOM) once supported one of the largest sea turtle fisheries in the United States. To fill an information gap in this region on abundance and distribution of sea turtles, we used vessel—based distance sampling and active capture methods to characterize current foraging aggregations near the St. Martins Marsh Aquatic Preserve. Over 10 sampling periods between 2012—2018, we completed 513 km of transects and recorded 819 turtles among 4 species—green turtle (Chelonia mydas, n = 624), Kemp’s ridley (Lepidochelys kempii, n = 147), loggerhead (Caretta caretta, n = 47), and a single hawksbill (Eretmochelys imbricata). Turtle densities in 4 study plots within the 200 km2 study site ranged from 57—221 immature green turtles/km2, 16—56 immature Kemp’s ridleys/km2, and 1—14 juvenile—to—adult loggerheads/km2. Of 200 green turtles captured, 67.5% showed skin tumors consistent with fibropapillomatosis, a frequency similar to that from urbanized estuaries of Florida’s east coast. The largest green turtles (> 60 cm straight standard carapace length), abundant in the southern portion of our study area, are of note because this size class is uncommonly recorded within US territorial waters. Analyses of green turtle mtDNA haplotypes found contributions from rookeries in the western GOM, Mexican Caribbean, and Costa Rica. Although Big Bend protected areas were principally designed to conserve marine and coastal habitats, these regulatory zones have also effectively encompassed a hotspot for foraging sea turtles.


2021 ◽  
Author(s):  
Miguel Angel Reyes-López ◽  
Fátima Yedith Camacho-Sánchez ◽  
Catherine E. Hart ◽  
Valeria Leal-Sepúlveda ◽  
Kevin Alan Zavala-Félix ◽  
...  

Sea turtles are reptiles that have inhabited the earth for 100 million years. These are divided into 2 families (Cheloniidae and Dermochelyidae) and 7 species of sea turtles in the world: the leatherback turtle (Dermochelys coriacea); hawksbill turtle (Eretmochelys imbricata); Kemp’s ridley (Lepidochelys kempii); olive ridley (L. olivacea); Loggerhead turtle (Caretta caretta); flatback sea turtle (Natator depressus) and green turtle (Chelonia mydas). In particular, Kemp’s ridley is included in the red list of IUCN categorized as “critically endangered”. The most important site around the Word is in Rancho Nuevo, Tamaulipas, Mexico. Where 80–95% of the world’s nesting is concentrated. Other nesting areas are Tepeguajes and Barra del Tordo, in Tamaulipas, and with less intensity in Veracruz (Lechuguillas and El Raudal beaches) and South Padre Island, Texas, USA. They deposit an average of about 90 eggs and hatching takes 40 to 60 days. Therefore, they are vulnerable to different anthropogenic activities and sources of pollution, such as heavy metals, which can cause toxic effects that are harmful to the turtles, damage their physiology and health. To understand the real situation about health and genetic parameters it is necessary to analyze biochemical and molecular factors in this species.


2021 ◽  
Vol 9 ◽  
Author(s):  
Liberty L. Boyd ◽  
John D. Zardus ◽  
Courtney M. Knauer ◽  
Lawrence D. Wood

Epibionts are organisms that utilize the exterior of other organisms as a living substratum. Many affiliate opportunistically with hosts of different species, but others specialize on particular hosts as obligate associates. We investigated a case of apparent host specificity between two barnacles that are epizoites of sea turtles and illuminate some ecological considerations that may shape their host relationships. The barnacles Chelonibia testudinaria and Chelonibia caretta, though roughly similar in appearance, are separable by distinctions in morphology, genotype, and lifestyle. However, though each is known to colonize both green (Chelonia mydas) and hawksbill (Eretmochelys imbricata) sea turtles, C. testudinaria is >5 times more common on greens, while C. caretta is >300 times more common on hawksbills. Two competing explanations for this asymmetry in barnacle incidence are either that the species’ larvae are spatially segregated in mutually exclusive host-encounter zones or their distributions overlap and the larvae behaviorally select their hosts from a common pool. We indirectly tested the latter by documenting the occurrence of adults of both barnacle species in two locations (SE Florida and Nose Be, Madagascar) where both turtle species co-mingle. For green and hawksbill turtles in both locations (Florida: n = 32 and n = 275, respectively; Madagascar: n = 32 and n = 125, respectively), we found that C. testudinaria occurred on green turtles only (percent occurrence – FL: 38.1%; MD: 6.3%), whereas the barnacle C. caretta was exclusively found on hawksbill turtles (FL: 82.2%; MD: 27.5%). These results support the hypothesis that the larvae of these barnacles differentially select host species from a shared supply. Physio-biochemical differences in host shell material, conspecific chemical cues, external microbial biofilms, and other surface signals may be salient factors in larval selectivity. Alternatively, barnacle presence may vary by host micro-environment. Dissimilarities in scute structure and shell growth between hawksbill and green turtles may promote critical differences in attachment modes observed between these barnacles. In understanding the co-evolution of barnacles and hosts it is key to consider the ecologies of both hosts and epibionts in interpreting associations of chance, choice, and dependence. Further studies are necessary to investigate the population status and settlement spectrum of barnacles inhabiting sea turtles.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
David P Marancik ◽  
Justin R Perrault ◽  
Lisa M Komoroske ◽  
Jamie A Stoll ◽  
Kristina N Kelley ◽  
...  

Abstract Evaluating sea turtle health can be challenging due to an incomplete understanding of pathophysiologic responses in these species. Proteome characterization of clinical plasma samples can provide insights into disease progression and prospective biomarker targets. A TMT-10-plex-LC–MS/MS platform was used to characterize the plasma proteome of five, juvenile, green turtles (Chelonia mydas) and compare qualitative and quantitative protein changes during moribund and recovered states. The 10 plasma samples yielded a total of 670 unique proteins. Using ≥1.2-fold change in protein abundance as a benchmark for physiologic upregulation or downregulation, 233 (34.8%) were differentially regulated in at least one turtle between moribund and recovered states. Forty-six proteins (6.9%) were differentially regulated in all five turtles with two proteins (0.3%) demonstrating a statistically significant change. A principle component analysis showed protein abundance loosely clustered between moribund samples or recovered samples and for turtles that presented with trauma (n = 3) or as intestinal floaters (n = 2). Gene Ontology terms demonstrated that moribund samples were represented by a higher number of proteins associated with blood coagulation, adaptive immune responses and acute phase response, while recovered turtle samples included a relatively higher number of proteins associated with metabolic processes and response to nutrients. Abundance levels of 48 proteins (7.2%) in moribund samples significantly correlated with total protein, albumin and/or globulin levels quantified by biochemical analysis. Differentially regulated proteins identified with immunologic and physiologic functions are discussed for their possible role in the green turtle pathophysiologic response and for their potential use as diagnostic biomarkers. These findings enhance our ability to interpret sea turtle health and further progress conservation, research and rehabilitation programs for these ecologically important species.


2017 ◽  
Vol 11 (1) ◽  
pp. 47
Author(s):  
I Nyoman S. Nuitja ◽  
Silvia Wijaya

The digestive organs of two sea turdes, Chelonia mydas L. and Eretmochelys imbicata L. with purpose to analyse the digestive tract and other organs, also to preform their weight were carapace length relation skimp. The specimens of the two species were obtained from slaughtered houses in Benoa Bay, South Bali.


Sign in / Sign up

Export Citation Format

Share Document