scholarly journals Simple mapping-based quantification of a mock microbial community using total RNA-seq data

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254556
Author(s):  
Shigeharu Moriya

Most microbes in the natural environment are difficult to cultivate. Thus, culture-independent analysis for microbial community structure is important for the understanding of its ecological functions. An immense ribosomal RNA sequence collection is available from phylogenetic research on organisms in all domains. These sequences are available for use in genetic research. However, the amplicon-seq process using PCR requires the construction of a sequence library. Construction can introduce bias into quantitative analyses, and each domain of species needs its own primer set. Total RNA sequencing has the advantage of analyzing an entire microbial community, including bacteria, archea, and eukaryote, at once. Such analysis yields large amounts of ribosomal RNA sequences that can be used for analysis without PCR bias. Evaluation using total RNA-seq for quantitative analysis of microbial communities and comparison with amplicon-seq is still rare. In the present study, we developed a mapping-based total RNA-seq analysis to obtain quantitative information on microbial community structure and compared our results with ordinary amplicon-seq methods. We read total RNA sequences from a commercially available mock community (ATCC MSA-2003) and divided reads into small subunit ribosomal RNA (ssrRNA) origin reads and others, such as mRNA origin reads. We then mapped ssrRNA origin reads on annotated assembled contigs and obtained quantitative results under several analysis strategies. Removal of low complexity sequences, sorting ssrRNA with paired-in mode, and performing homology-based taxonomical assignments (BLAST+ or vsearch) showed superior outcomes to other strategies. Results with this approach showed a median relative abundance among ten mock community members of ~10%; ordinary amplicon-seq showed a much lower percentage. Thus, total RNA-seq can be a powerful tool for analyzing microbial community structure and is not limited to analyzing gene expression profiling of microbiomes.

Metabolites ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 414
Author(s):  
Naren Gaowa ◽  
Wenli Li ◽  
Sonia Gelsinger ◽  
Brianna Murphy ◽  
Shengli Li

Diet-induced acidosis imposes a health risk to young calves. In this study, we aimed to investigate the host jejunum transcriptome changes, along with its microbial community variations, using our established model of feed-induced ruminal acidosis in young calves. Eight bull calves were randomly assigned to two diet treatments beginning at birth (a starch-rich diet, Aci; a control diet, Con). Whole-transcriptome RNA sequencing was performed on the jejunum tissues collected at 17 weeks of age. Ribosomal RNA reads were used for studying microbial community structure variations in the jejunum. A total of 853 differentially expressed genes were identified (402 upregulated and 451 downregulated) between the two groups. The cell cycle and the digestion and absorption of protein in jejunal tissue were affected by acidosis. Compared to the control, genera of Campylobacter, Burkholderia, Acidaminococcus, Corynebacterium, and Olsenella significantly increased in abundance in the Aci group, while Lachnoclostridium and Ruminococcus were significantly lower in the Aci group. Expression changes in the AXL gene were associated with the abundance variations of a high number of genera in jejunum. Our study provided a snapshot of the transcriptome changes in the jejunum and its associated meta-transcriptome changes in microbial communities in young calves with feed-induced acidosis.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Phillip A. Engen ◽  
Ankur Naqib ◽  
Cheryl Jennings ◽  
Stefan J. Green ◽  
Alan Landay ◽  
...  

AbstractWe investigated nasopharyngeal microbial community structure in COVID-19-positive and -negative patients. High-throughput 16S ribosomal RNA gene amplicon sequencing revealed significant microbial community structure differences between COVID-19-positive and -negative patients. This proof-of-concept study demonstrates that: (1) nasopharyngeal microbiome communities can be assessed using collection samples already collected for SARS-CoV-2 testing (viral transport media) and (2) SARS-CoV-2 infection is associated with altered dysbiotic microbial profiles which could be a biomarker for disease progression and prognosis in SARS-CoV-2.


2021 ◽  
Author(s):  
Phillip A. Engen ◽  
Ankur Naqib ◽  
Cheryl Jennings ◽  
Stefan J. Green ◽  
Alan Landay ◽  
...  

Abstract We investigated nasopharyngeal microbial community structure in COVID-19-positive and -negative patients. High-throughput 16S ribosomal RNA gene amplicon sequencing revealed microbial community structure differences between COVID-19-positive and -negative patients. This proof-of-concept study demonstrates that: (1) nasopharyngeal microbiome communities can be assessed using collection procedures for SARS-CoV-2 testing and (2) SARS-CoV-2 infection is associated with altered dysbiotic microbial profiles which could be a biomarker for disease progression and prognosis in SARS-CoV-2.


2009 ◽  
Vol 27 (4) ◽  
pp. 385-387
Author(s):  
W. D. Eaton ◽  
B. Wilmot ◽  
E. Epler ◽  
S. Mangiamelli ◽  
D. Barry

Sign in / Sign up

Export Citation Format

Share Document