scholarly journals Determining optimal laser-beam cutting equipment investment through a robust optimization modeling approach

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254893
Author(s):  
Juan Feller ◽  
Alejandro F. Mac Cawley ◽  
Jorge A. Ramos-Grez ◽  
Iván La Fé-Perdomo

The acquisition of Advanced Manufacturing Technologies (AMT), such as high-power fiber or CO2 laser cutting equipment, generally involves high investment levels. Its payback period is usually more extended, and there is a moderate-to-high risk involved in adopting these technologies. In this work, we present a robust model that optimizes equipment investing decisions, considers the process’s technical constraint and finds an optimal production plan based on the available machinery. We propose a linear investment model based on historical demand information and take physical process parameters for a LASER cutting equipment, such as cutting speed and gas consumption. The model is then transformed into a robust optimization model which considers demand uncertainty. Second, we determine the optimal production plan based on the results of the robust optimization model and assuming that demand follows a normal distribution. As a case study, we decided on the investment and productive plan for a company that offers Laser-Beam Cutting (LBC) services. The case study validates the effectiveness of the proposed model and proves the robustness of the solution. For this specific application of the model, results showed that the optimal robust solution could increase the company’s expected profits by 6.4%.

2012 ◽  
Vol 730-732 ◽  
pp. 349-354
Author(s):  
Daniel G. Vieira ◽  
José Filipe Bizarro de Meireles ◽  
João Pedro Nunes

In order to improve the dynamic behaviour of an industrial laser cutting equipment a sandwich solution, using a carbon fibre reinforced polymer (CFRP) and polyester foam core, was implemented to construct its main runway structural frame, which supports the cutting head and major laser beam mirrors and lens. Nowadays, the commercial competiveness of laser cutting equipments is considerable enhanced by their higher cutting speed and precision, as well as, cost. With the recent available higher power laser beam generators and swifter motors quicker and powerful cuts may be already done. However, at accelerations of 3 and 4 g’s already enabled by linear motors, the lack of stiffness and high mass and consequent inertia of the traditional runway structural frames, made from steel and/or aluminium, do not allow achieving high required cutting precisions. Thus, the present study considered replacing those conventional materials by much lighter advanced CRFP composites to improve the dynamic performance of an existing laser cutting equipment. Advanced numeric Finite Element Method (FEM) calculations by using the ANSYS package software were made to verify the static and dynamic behaviours of the new composite structural frame and compare them to simulations made with the currently used steel solution. The composite structural frame processing method has been also studied and defined in this work. Furthermore, the composite laminate has been optimised by defining the better number of stacking layers and fibre orientations to be used, as well as, the foam core thickness. The failure of the new sandwich structural composite runway frame has been verified through the Tsai-Wu criterion. Finally, an economic analysis of the viability of the new composite solution adopted will be also presented.


2017 ◽  
Vol 756 ◽  
pp. 71-79
Author(s):  
Martin Lachman ◽  
Jiří Šafka

Laser technologies are considered to be unconventional technologies. Laser cutting is one of the most popular industrial operations that use a laser beam. Fibre lasers are most commonly used for cutting metallic materials. The aim of this paper is to experimentally demonstrate a procedure for determining the focal length of a laser beam from the output of the cutting head of a JK400FL fibre laser. Along with other factors, the correct position of the focal point of a laser beam cutting materials, plays a vital role in the quality of the cut and also in determining the cutting speed. It is possible to use a higher cutting speed of the laser machine, without compromising the quality of the cut.


2019 ◽  
Vol 44 (1) ◽  
pp. 21-27
Author(s):  
Dobre Runchev ◽  
Filip Zdraveski ◽  
Irena Ivanova

The main objective of the research covered in this paper is to present results for the quality of surfaces thermally cut with a laser beam. The variety of steel materials used as samples on which laser cutting is performed are the following Č.0146 (1.0330), Č.0147 (1.0333), Č.2131 (1.5024), SS Ferbec CR, HARDOX 450 and HARDOX 550. Thermal cutting is carried out with a CNC controlled Fiber laser BAYKAL type BLS–F–1530. The quality of the cut surface is analyzed based on varying the power of the laser beam, changing cutting speed and the type of additional gas (oxygen, air and nitrogen). By visual inspection, measuring the roughness of the cut surface and measuring the width of the intersection, it is determined the influence of the factors like type of the base material, type of gases, the power of thelaser beam and the cutting speed, in accordance with the standards DIN EN ISO 9013-2002 and the JUS C.T3.022.


2019 ◽  
Vol 11 (2) ◽  
pp. 229-245
Author(s):  
Fatemeh Delkhosh ◽  
Seyed Jafar Sadjadi

AbstractThe growing demand for fuels combined with the fact that there are limited fossil fuel resources has led the world to seek renewable energy resources such as biofuels. Micro-algae can be an efficient source of biofuel energy, since it significantly reduces air pollution. In this paper, we develop a micro-algae biofuel supply chain through a two-stage approach. This study aims to commercialize micro-algae as a new source of energy. In the first stage, we utilize the Best-Worst Method (BWM) to determine the best cultivation system, and in the second stage, a bi-objective mathematical model is presented which simultaneously optimizes the economic and environmental objectives. We also propose a robust optimization model to deal with the uncertain nature of the biofuel supply chain. Our analysis on the trade-off between the supply chain’s total cost and unfulfillment demand arrives at interesting managerial insights. Furthermore, to show the effectiveness of the robust optimization model, we compare the performance of the robust and deterministic models, and the results show that the robust model dominates over the deterministic model in all scenarios. Finally, sensitivity analysis on critical parameters is conducted to help decision-makers find the optimal trade-off between investment and its benefits.


2009 ◽  
Vol 83-86 ◽  
pp. 793-800 ◽  
Author(s):  
M.M. Noor ◽  
K. Kadirgama ◽  
M.M. Rahman ◽  
N.M. Zuki N.M. ◽  
Mohd Ruzaimi Mat Rejab ◽  
...  

This paper develops the predicting model on surface roughness of laser beam cutting (LBC) for acrylic sheets. Box-Behnken design based on Response surface method was used to predict the effect of laser cutting parameters including the power requirement, cutting speed and tip distance on surface roughness during the machining. Response surface method (RSM) was used to minimize the number of experiments. It can be seen that from the experimental results, the effects of the laser cutting parameters with the surface roughness were investigated. It was found that the surface roughness is significantly affected by the tip distance followed by the power requirement and cutting speed. Some defects were found in microstructure such as burning, melting and wavy surface. This simulation gain more understanding of the surface roughness distribution in laser cutting. The developed model is suitable to be used in the range of (power 90 to 95, cutting speed 700 to 1100 and tip distance 3 to 9) to predict surface roughness.


2013 ◽  
Vol 6 (4) ◽  
pp. 569-572
Author(s):  
Vladislav Markovič

The article explores the quality dependence of the edge surface of steel C45 LST EN 10083-1 obtained cutting the material using laser on different cutting regimes and variations in the thickness of trial steel. The paper presents the influence of the main modes of laser cutting equipment Trulaser 3030, including cutting speed, pressure, angle and the thickness of the surface on the quality characteristics of the sample. The quality of the edge after laser cutting is the most important indicator influencing such technological spread in industry worldwide. Laser cutting is the most popular method of material cutting. Therefore, the article focuses on cutting equipment, cutting defects and methods of analysis. Research on microstructure, roughness and micro-toughness has been performed with reference to edge samples. At the end of the publication, conclusions are drawn. Santrauka Straipsnyje tiriama plieno C45 LST EN 10083-1 lazerinio pjovimo metu gautos briaunos paviršiaus kokybės priklausomybė nuo skirtingų pjovimo režimų ir bandomojo plieno storio pokyčio. Straipsnyje pateikta: pagrindinių lazerinio pjovimo režimų – pjovimo greičio, slėgio, kampo ir pjaunamojo paviršiaus storio – įtaka kokybinėms bandinio charakteristikoms. Tyrimo metu išryškėjo, kad, didinant darbinių dujų slėgį nuo 0,5 iki 0,9 Mpa, skirtumas tarp bandinių nuokrypio nuo aukščio reikšmių siekia iki 0,26 mm. Pjaunant 6 mm storio plieną, pasiekiamas didžiausias pjaunamos briaunos kietumas – 575 HV.


Sign in / Sign up

Export Citation Format

Share Document