scholarly journals QUALITY ANALYSIS OF CUTTING STEEL USING LASER / PLIENO PJOVIMO LAZERIU KOKYBĖS TYRIMAS

2013 ◽  
Vol 6 (4) ◽  
pp. 569-572
Author(s):  
Vladislav Markovič

The article explores the quality dependence of the edge surface of steel C45 LST EN 10083-1 obtained cutting the material using laser on different cutting regimes and variations in the thickness of trial steel. The paper presents the influence of the main modes of laser cutting equipment Trulaser 3030, including cutting speed, pressure, angle and the thickness of the surface on the quality characteristics of the sample. The quality of the edge after laser cutting is the most important indicator influencing such technological spread in industry worldwide. Laser cutting is the most popular method of material cutting. Therefore, the article focuses on cutting equipment, cutting defects and methods of analysis. Research on microstructure, roughness and micro-toughness has been performed with reference to edge samples. At the end of the publication, conclusions are drawn. Santrauka Straipsnyje tiriama plieno C45 LST EN 10083-1 lazerinio pjovimo metu gautos briaunos paviršiaus kokybės priklausomybė nuo skirtingų pjovimo režimų ir bandomojo plieno storio pokyčio. Straipsnyje pateikta: pagrindinių lazerinio pjovimo režimų – pjovimo greičio, slėgio, kampo ir pjaunamojo paviršiaus storio – įtaka kokybinėms bandinio charakteristikoms. Tyrimo metu išryškėjo, kad, didinant darbinių dujų slėgį nuo 0,5 iki 0,9 Mpa, skirtumas tarp bandinių nuokrypio nuo aukščio reikšmių siekia iki 0,26 mm. Pjaunant 6 mm storio plieną, pasiekiamas didžiausias pjaunamos briaunos kietumas – 575 HV.

Author(s):  
Kuen-Suan Chen ◽  
Der-Fa Chen ◽  
Ming-Chieh Huang ◽  
Tsang-Chuan Chang

Machine tools are fundamental equipment in industrial production, and their processing quality exerts a direct impact on the quality of the component product that they process. Thus, machine tool manufacturers develop various machine tools depending on market needs and processing functions, and the processed component products generally possess multiple smaller-the-better, larger-the-better, and nominal-the-best quality characteristics at the same time. For this reason, this study employed the widely used process capability indices, [Formula: see text], [Formula: see text], and [Formula: see text] to develop a model that can evaluate the process quality of component products and analyze the processing quality of various machine tools. We first converted the process capability indices into functions of the accuracy and precision indices and constructed a multi-characteristic quality analysis chart that can identify the reason for poor process quality in a quality characteristic. Furthermore, considering the fact that the process capability indices can only be estimated, which may lead to misjudgment in the evaluation of process quality, we derived the [Formula: see text] upper confidence limits of indices and the coordinates formed by the corresponding accuracy and precision indices. Manufacturers can then evaluate the process quality levels of the quality characteristics based on where the coordinates falls in the multi-characteristic quality analysis chart. This can more reliably assist manufacturers in monitoring the processing quality of their machine tools and providing feedback to the machine tool manufacturers for machine improvement.


2006 ◽  
Vol 505-507 ◽  
pp. 847-852 ◽  
Author(s):  
Xu Yue Wang ◽  
Wen Ji Xu ◽  
Ren Ke Kang ◽  
Yi De Liang

An experimental analysis is presented which investigates the relationship between cutting parameters and the volume of material removal as well as its cutting quality on a Nd:YAG laser cutting system. The parameters that varied on two testing thickness during cutting include cutting speed, incident laser power and focal position in a continuous through cut. Various trends of the kerf geometrical features in terms of the varying process parameters are analyzed and shown to be reasonable. Discussions are also given on kerf geometry control in situations with cutting parameters. It shows that the effects of varying parameters such as cutting speed, laser power and focal position on cutting kerf width, surface roughness, and striation that have provided a deeper understanding of the laser machining.


2017 ◽  
Vol 17 (4) ◽  
pp. 109-114 ◽  
Author(s):  
J. Meško ◽  
R. Nigrovič ◽  
A. Zrak

Abstract This article deals with the technology and principles of the laser cutting of ductile cast iron. The properties of the CO2 laser beam, input parameters of the laser cutting, assist gases, the interaction of cut material and the stability of cutting process are described. The commonly used material (nodular cast iron - share of about 25% of all castings on the market) and the method of the laser cutting of that material, including the technological parameters that influence the cutting edge, are characterized. Next, the application and use of this method in mechanical engineering practice is described, focusing on fixing and renovation of mechanical components such as removing the inflow gate from castings with the desired quality of the cut, without the further using of the chip machining technology. Experimental samples from the nodular cast iron were created by using different technological parameters of laser cutting. The heat affected zone (HAZ), its width, microstructure and roughness parameter Pt was monitored on the experimental samples (of thickness t = 13 mm). The technological parameters that were varied during the experiments included the type of assist gases (N2 and O2), to be more specific the ratio of gases, and the cutting speed, which ranged from 1.6 m/min to 0.32 m/min. Both parameters were changed until the desired properties were achieved.


2017 ◽  
Vol 756 ◽  
pp. 71-79
Author(s):  
Martin Lachman ◽  
Jiří Šafka

Laser technologies are considered to be unconventional technologies. Laser cutting is one of the most popular industrial operations that use a laser beam. Fibre lasers are most commonly used for cutting metallic materials. The aim of this paper is to experimentally demonstrate a procedure for determining the focal length of a laser beam from the output of the cutting head of a JK400FL fibre laser. Along with other factors, the correct position of the focal point of a laser beam cutting materials, plays a vital role in the quality of the cut and also in determining the cutting speed. It is possible to use a higher cutting speed of the laser machine, without compromising the quality of the cut.


2020 ◽  
Vol 10 (4) ◽  
pp. 6062-6067
Author(s):  
A. Boudjemline ◽  
M. Boujelbene ◽  
E. Bayraktar

This paper investigates high power CO2 laser cutting of 5mm-thick Ti-6Al-4V titanium alloy sheets, aiming to evaluate the effects of various laser cutting parameters on surface roughness. Using multiple linear regression, a mathematical model based on experimental data was proposed to predict the maximum height of the surface Sz as a function of two laser cutting parameters, namely cutting speed and assist-gas pressure. The adequacy of the proposed model was validated by Analysis Of Variance (ANOVA). Experimental data were compared with the model’s data to verify the capacity of the proposed model. The results indicated that for fixed laser power, cutting speed is the predominant cutting parameter that affects the maximum height of surface roughness.


2019 ◽  
Vol 44 (1) ◽  
pp. 21-27
Author(s):  
Dobre Runchev ◽  
Filip Zdraveski ◽  
Irena Ivanova

The main objective of the research covered in this paper is to present results for the quality of surfaces thermally cut with a laser beam. The variety of steel materials used as samples on which laser cutting is performed are the following Č.0146 (1.0330), Č.0147 (1.0333), Č.2131 (1.5024), SS Ferbec CR, HARDOX 450 and HARDOX 550. Thermal cutting is carried out with a CNC controlled Fiber laser BAYKAL type BLS–F–1530. The quality of the cut surface is analyzed based on varying the power of the laser beam, changing cutting speed and the type of additional gas (oxygen, air and nitrogen). By visual inspection, measuring the roughness of the cut surface and measuring the width of the intersection, it is determined the influence of the factors like type of the base material, type of gases, the power of thelaser beam and the cutting speed, in accordance with the standards DIN EN ISO 9013-2002 and the JUS C.T3.022.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 2540-2549
Author(s):  
Ting Jiang ◽  
Chunmei Yang ◽  
Yueqiang Yu ◽  
Yuexuan Lou ◽  
Jiuqing Liu ◽  
...  

In order to improve the processing quality of wood parts, an orthogonal experimental design of five factors and four levels was adopted, and a water-jet assisted laser cutting experiment on Korean pine (Pinus koraiensis) was conducted. Moreover, by using range analysis, the influences of the defocusing amount, cutting speed, laser power, water pressure, and water jet angle on the processing quality of Korean pine parts were evaluated, and the optimum process parameters were determined. The test results show that when the defocusing amount was -1 mm, water jet angle was 30°, laser power was 48 W, water pressure was 1.0 MPa, and cutting speed was 25 mm/s, the best processing quality of Korean pine parts was obtained.


2006 ◽  
Vol 315-316 ◽  
pp. 113-117
Author(s):  
S.J. Lv ◽  
Yang Wang ◽  
Shi Jun Ji

This paper presents the experiments of Nd:YAG pulsed laser cutting of GH3536 superalloy sheet and investigates the influences of different cutting parameters on laser cut quality factors including recast layer, kerf width and dross formation. The results show that the recast layer possesses finer granularity and higher hardness than those of the matrix, and the thickness of recast layer increases with increased pulse energy and decreases as the cutting speed and gas pressure increase. Oxygen-assisted cutting comes with thick recast layers and argon-assisted cutting acquires thin layers. The low-strength oxide layer worsens the kerf surfaces in oxygen-assisted cutting while argon-assisted cutting produces unaffected surface quality and is suitable for applications with subsequent welding.


2012 ◽  
Vol 730-732 ◽  
pp. 349-354
Author(s):  
Daniel G. Vieira ◽  
José Filipe Bizarro de Meireles ◽  
João Pedro Nunes

In order to improve the dynamic behaviour of an industrial laser cutting equipment a sandwich solution, using a carbon fibre reinforced polymer (CFRP) and polyester foam core, was implemented to construct its main runway structural frame, which supports the cutting head and major laser beam mirrors and lens. Nowadays, the commercial competiveness of laser cutting equipments is considerable enhanced by their higher cutting speed and precision, as well as, cost. With the recent available higher power laser beam generators and swifter motors quicker and powerful cuts may be already done. However, at accelerations of 3 and 4 g’s already enabled by linear motors, the lack of stiffness and high mass and consequent inertia of the traditional runway structural frames, made from steel and/or aluminium, do not allow achieving high required cutting precisions. Thus, the present study considered replacing those conventional materials by much lighter advanced CRFP composites to improve the dynamic performance of an existing laser cutting equipment. Advanced numeric Finite Element Method (FEM) calculations by using the ANSYS package software were made to verify the static and dynamic behaviours of the new composite structural frame and compare them to simulations made with the currently used steel solution. The composite structural frame processing method has been also studied and defined in this work. Furthermore, the composite laminate has been optimised by defining the better number of stacking layers and fibre orientations to be used, as well as, the foam core thickness. The failure of the new sandwich structural composite runway frame has been verified through the Tsai-Wu criterion. Finally, an economic analysis of the viability of the new composite solution adopted will be also presented.


2020 ◽  
Author(s):  
Dongkyoung Lee

Abstract This experimental study investigated for the effect of laser parameters on machining of the SS41 and SUS304. These materials play an importance role in engineering aspect. They are widely used in high-tech industries such as aerospace, automotive, and semiconductor. Due to the development of technology and high-tech industrialization, the various processing technologies requiring high precision are being developed. However, the conventional cutting process is difficult to meet high precision processing. Therefore, to achieve high precision processing of the SS41 and SUS304, laser manufacturing has been applied. The experiment investigates the process quality of laser cutting for SS41 and SUS304, with the usage of a continuous wave CO2 laser cutting system. The experimental variables are set to the laser cutting speed, laser power, and different used materials. The results are significantly affected by the laser parameters. As the results, the process quality of the laser cutting has been observed by measuring the top and bottom kerf widths, as well as the size of the melting zone and HAZ according to Eline. In addition, the evaluation of the laser processing parameters is significantly important to achieve optimal cutting quality. Therefore, we observed the correlation between the laser parameters and cutting quality. These were evaluated by analysis of variance (ANOVA) and multiple regression analysis.


Sign in / Sign up

Export Citation Format

Share Document