scholarly journals IMRAS—Immunization with radiation-attenuated Plasmodium falciparum sporozoites by mosquito bite: Cellular immunity to sporozoites, CSP, AMA1, TRAP and CelTOS

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256396
Author(s):  
Martha Sedegah ◽  
Michael R. Hollingdale ◽  
Harini Ganeshan ◽  
Maria Belmonte ◽  
Jun Huang ◽  
...  

Background Immunization with radiation-attenuated sporozoites (RAS) by mosquito bites provides >90% sterile protection against Plasmodium falciparum malaria in humans. We conducted a clinical trial based on data from previous RAS clinical trials that suggested that 800–1200 infected bites should induce ~50% protective vaccine efficacy (VE) against controlled human malaria infection (CHMI) administered three weeks after the final immunization. Two cohorts were immunized separately. VE was 55% in Cohort 1 but 90% in Cohort 2, the cohort that received a higher first dose and a reduced (fractional) fifth dose. Immune responses were better boosted by the fractional fifth dose in Cohort 2 and suggested the importance of the fractional fifth dose for increased protection in Cohort 2 responses. Three protected subjects were later boosted and were protected suggesting that protection could be extended to at least 67 weeks. Methods The ex vivo FluoroSpot assay was used to measure peripheral IFN-γ, IL2, and IFN-γ+IL2 responses to PfNF54 sporozoites and malaria antigens CSP, AMA1, TRAP, and CelTOS using pools of synthetic overlapping 15mer peptides spanning each antigen. Results There was no correlation between IFN-γ, IL2, and IFN-γ+IL2 responses to sporozoites and protection, but fold-increases between post-4th and post-5th responses greater than 1.0 occurred mostly in protected subjects. IFN-γ and IL2 responses to TRAP, CelTOS and CSP occurred only in protected subjects. Peripheral IFN-γ, IL2, and IFN-γ+IL2 responses were short-lived and low by 27 weeks post-CHMI but were restored by boosting. Conclusions These studies highlight the importance of vaccine dose and schedule for vaccine efficacy, and suggest that CSP, TRAP, AMA1 and CelTOS may be targets of protective immunity. The correlation between fold-increases in responses and protection should be explored in other vaccine trials. Trial registration ClinicalTrials.gov NCT01994525.

Author(s):  
Kirsten E Lyke ◽  
Alexandra Singer ◽  
Andrea A Berry ◽  
Sharina Reyes ◽  
Sumana Chakravarty ◽  
...  

Abstract Background A live-attenuated Plasmodium falciparum (Pf) sporozoite (SPZ) vaccine (PfSPZ Vaccine) has shown up to 100% protection against controlled human malaria infection (CHMI) using homologous parasites (same Pf strain as in the vaccine). Using a more stringent CHMI, with heterologous parasites (different Pf strain), we assessed the impact of higher PfSPZ doses, a novel multi-dose prime regimen, and a delayed vaccine boost upon vaccine efficacy. Methods Four groups of 15 healthy, malaria-naïve adults were immunized. Group (Grp) 1 received five doses of 4.5x10 5 PfSPZ (days 1, 3, 5, 7; week 16). Grps 2, 3 and 4 received three doses (weeks 0, 8, 16) with Gp 2 receiving 9.0×10 5/dose, Grp 3 receiving 18.0×10 5/dose, and Grp 4 receiving 27.0×10 5 for dose 1 and 9.0×10 5 for doses 2 and 3. VE was assessed by heterologous CHMI after 12 or 24 weeks. Volunteers not protected at 12 weeks were boosted prior to repeat CHMI at 24 weeks. Results At 12-week CHMI, 6/15 (40%) Group 1 (P=0.04), 3/15 (20%) Group 2 vs. 0/8 controls remained aparasitemic. At 24-week CHMI, 3/13 (23%) Group 3, 3/14 (21%) Group 4 vs. 0/8 controls remained aparasitemic (Groups 2-4, VE not significant). Post-boost, 9/14 (64%) vs. 0/8 controls remained aparasitemic (3/6 Group 1, P=0.025; 6/8 Group 2, P=0.002). Conclusions Four stacked, priming injections (multi-dose priming) showed 40% VE against heterologous CHMI, while dose escalation of PfSPZ using single dose priming was not significantly protective. Boosting unprotected subjects improved VE at 24 weeks to 64%.


2018 ◽  
Vol 3 ◽  
pp. 155 ◽  
Author(s):  
Melissa C. Kapulu ◽  
Patricia Njuguna ◽  
Mainga M. Hamaluba ◽  

Malaria remains a major public health burden despite approval for implementation of a partially effective pre-erythrocytic malaria vaccine. There is an urgent need to accelerate development of a more effective multi-stage vaccine. Adults in malaria endemic areas may have substantial immunity provided by responses to the blood stages of malaria parasites, but field trials conducted on several blood-stage vaccines have not shown high levels of efficacy.  We will use controlled human malaria infection (CHMI) studies with malaria-exposed volunteers to identify correlations between immune responses and parasite growth rates in vivo.  Immune responses more strongly associated with control of parasite growth should be prioritized to accelerate malaria vaccine development. We aim to recruit up to 200 healthy adult volunteers from areas of differing malaria transmission in Kenya, and after confirming their health status through clinical examination and routine haematology and biochemistry, we will comprehensively characterize immunity to malaria using >100 blood-stage antigens. We will administer 3,200 aseptic, purified, cryopreserved Plasmodium falciparum sporozoites (PfSPZ Challenge) by direct venous inoculation. Serial quantitative polymerase chain reaction to measure parasite growth rate in vivo will be undertaken. Clinical and laboratory monitoring will be undertaken to ensure volunteer safety. In addition, we will also explore the perceptions and experiences of volunteers and other stakeholders in participating in a malaria volunteer infection study. Serum, plasma, peripheral blood mononuclear cells and extracted DNA will be stored to allow a comprehensive assessment of adaptive and innate host immunity. We will use CHMI in semi-immune adult volunteers to relate parasite growth outcomes with antibody responses and other markers of host immunity. Registration: ClinicalTrials.gov identifier NCT02739763.


2017 ◽  
Vol 114 (10) ◽  
pp. 2711-2716 ◽  
Author(s):  
Kirsten E. Lyke ◽  
Andrew S. Ishizuka ◽  
Andrea A. Berry ◽  
Sumana Chakravarty ◽  
Adam DeZure ◽  
...  

A live-attenuated malaria vaccine,Plasmodium falciparumsporozoite vaccine (PfSPZ Vaccine), confers sterile protection against controlled human malaria infection (CHMI) withPlasmodium falciparum(Pf) parasites homologous to the vaccine strain up to 14 mo after final vaccination. No injectable malaria vaccine has demonstrated long-term protection against CHMI using Pf parasites heterologous to the vaccine strain. Here, we conducted an open-label trial with PfSPZ Vaccine at a dose of 9.0 × 105PfSPZ administered i.v. three times at 8-wk intervals to 15 malaria-naive adults. After CHMI with homologous Pf parasites 19 wk after final immunization, nine (64%) of 14 (95% CI, 35–87%) vaccinated volunteers remained without parasitemia compared with none of six nonvaccinated controls (P= 0.012). Of the nine nonparasitemic subjects, six underwent repeat CHMI with heterologous Pf7G8 parasites 33 wk after final immunization. Five (83%) of six (95% CI, 36–99%) remained without parasitemia compared with none of six nonvaccinated controls. PfSPZ-specific T-cell and antibody responses were detected in all vaccine recipients. Cytokine production by T cells from vaccinated subjects after in vitro stimulation with homologous (NF54) or heterologous (7G8) PfSPZ were highly correlated. Interestingly, PfSPZ-specific T-cell responses in the blood peaked after the first immunization and were not enhanced by subsequent immunizations. Collectively, these data suggest durable protection against homologous and heterologous Pf parasites can be achieved with PfSPZ Vaccine. Ongoing studies will determine whether protective efficacy can be enhanced by additional alterations in the vaccine dose and number of immunizations.


2019 ◽  
Author(s):  
Jerome Nyhalah Dinga ◽  
Stanley Dobgima Gamua ◽  
Dieudonné Lemuh Njimoh ◽  
Francis N. G. Chuma ◽  
Apollinaire Djikeng ◽  
...  

Abstract Despite the amount of resources deployed and technological advancements in Molecular Biology, vaccinology, immunology, genetics, and biotechnology, there is still no effective vaccines against malaria. Immunity to either malaria or East Coast fever is usually seen as species- and/or strain-specific. But there is growing body of evidence suggesting the possibility of the existence of cross strain, cross species and cross genus immune responses in apicomplexans. The principle of gene conservations indicates that homologues play similar role in closely related organisms. UB05 antigen (XP_001347656.2) from Plasmodium falciparum is part of chimeric UB05-09 antigen; a potential vaccine candidate has been demonstrated to be a marker of protective immunity in malaria. The homologue of UB05 in Theileria parva is TpUB05 (XP_763711.1) which was also tested and shown to be a potential marker of protective immunity in ECF as well. In a bid to identify potent markers of protective immunity to aid malaria vaccine development, TpUB05 was tested in malaria caused by Plasmodium falciparum . UB05 antigen was tested in malaria using ELISpot, ELISA, and Growth Inhibition assays with samples from a malaria endemic region, and published. During these same experiments, TpUB05 antigen was tested alongside UB05, in separate wells but on the same plates and exposed to the same experimental conditions and the result presented here. Here we compare the performance of TpUB05 to that of UB05 in terms of the type and magnitude of immune responses provoked in malaria. It was observed that TpUB05 provoked stronger immune responses in malaria compared to UB05 antigen ex-vivo . This suggests that TpUB05 from Theileria parva is a better marker of protective immunity in malaria compared to its homologue UB05 from Plasmodium falciparum .


2019 ◽  
Vol 3 ◽  
pp. 155
Author(s):  
Melissa C. Kapulu ◽  
Patricia Njuguna ◽  
Mainga M. Hamaluba ◽  

Malaria remains a major public health burden despite approval for implementation of a partially effective pre-erythrocytic malaria vaccine. There is an urgent need to accelerate development of a more effective multi-stage vaccine. Adults in malaria endemic areas may have substantial immunity provided by responses to the blood stages of malaria parasites, but field trials conducted on several blood-stage vaccines have not shown high levels of efficacy.  We will use the controlled human malaria infection (CHMI) models with malaria-exposed volunteers to identify correlations between immune responses and parasite growth rates in vivo.  Immune responses more strongly associated with control of parasite growth should be prioritized to accelerate malaria vaccine development. We aim to recruit up to 200 healthy adult volunteers from areas of differing malaria transmission in Kenya, and after confirming their health status through clinical examination and routine haematology and biochemistry, we will comprehensively characterize immunity to malaria using >100 blood-stage antigens. We will administer 3,200 aseptic, purified, cryopreserved Plasmodium falciparum sporozoites (PfSPZ Challenge) by direct venous inoculation. Serial quantitative polymerase chain reaction to measure parasite growth rate in vivo will be undertaken. Clinical and laboratory monitoring will be undertaken to ensure volunteer safety. In addition, we will also explore the perceptions and experiences of volunteers and other stakeholders in participating in a malaria volunteer infection study. Serum, plasma, peripheral blood mononuclear cells and whole blood will be stored to allow a comprehensive assessment of adaptive and innate host immunity. We will use CHMI in semi-immune adult volunteers to relate parasite growth outcomes with antibody responses and other markers of host immunity. Registration: ClinicalTrials.gov identifier NCT02739763.


2022 ◽  
Vol 219 (2) ◽  
Author(s):  
Ilka Wahl ◽  
Hedda Wardemann

The induction of protective humoral immune responses against sporozoite surface proteins of the human parasite Plasmodium falciparum (Pf) is a prime goal in the development of a preerythrocytic malaria vaccine. The most promising antibody target is circumsporozoite protein (CSP). Although PfCSP induces strong humoral immune responses upon vaccination, vaccine efficacy is overall limited and not durable. Here, we review recent efforts to gain a better molecular and cellular understanding of anti-PfCSP B cell responses in humans and discuss ways to overcome limitations in the induction of stable titers of high-affinity antibodies that might help to increase vaccine efficacy and promote long-lived protection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Carlos Lamsfus Calle ◽  
Rolf Fendel ◽  
Anurag Singh ◽  
Thomas L. Richie ◽  
Stephen L. Hoffman ◽  
...  

Malaria can cause life-threatening complications which are often associated with inflammatory reactions. More subtle, but also contributing to the burden of disease are chronic, often subclinical infections, which result in conditions like anemia and immunologic hyporesponsiveness. Although very frequent, such infections are difficult to study in endemic regions because of interaction with concurrent infections and immune responses. In particular, knowledge about mechanisms of malaria-induced immunosuppression is scarce. We measured circulating immune cells by cytometry in healthy, malaria-naïve, adult volunteers undergoing controlled human malaria infection (CHMI) with a focus on potentially immunosuppressive cells. Infectious Plasmodium falciparum (Pf) sporozoites (SPZ) (PfSPZ Challenge) were inoculated during two independent studies to assess malaria vaccine efficacy. Volunteers were followed daily until parasites were detected in the circulation by RT-qPCR. This allowed us to analyze immune responses during pre-patency and at very low parasite densities in malaria-naïve healthy adults. We observed a consistent increase in circulating polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) in volunteers who developed P. falciparum blood stage parasitemia. The increase was independent of preceding vaccination with a pre-erythrocytic malaria vaccine. PMN-MDSC were functional, they suppressed CD4+ and CD8+ T cell proliferation as shown by ex-vivo co-cultivation with stimulated T cells. PMN-MDSC reduced T cell proliferation upon stimulation by about 50%. Interestingly, high circulating PMN-MDSC numbers were associated with lymphocytopenia. The number of circulating regulatory T cells (Treg) and monocytic MDSC (M-MDSC) showed no significant parasitemia-dependent variation. These results highlight PMN-MDSC in the peripheral circulation as an early indicator of infection during malaria. They suppress CD4+ and CD8+ T cell proliferation in vitro. Their contribution to immunosuppression in vivo in subclinical and uncomplicated malaria will be the subject of further research. Pre-emptive antimalarial pre-treatment of vaccinees to reverse malaria-associated PMN-MDSC immunosuppression could improve vaccine response in exposed individuals.


Sign in / Sign up

Export Citation Format

Share Document