scholarly journals Trypsin induces an aversive response in zebrafish by PAR2 activation in keratinocytes

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0257774
Author(s):  
Abdullah Alsrhani ◽  
Revathi Raman ◽  
Pudur Jagadeeswaran

Previously we have shown that trypsin, a protein typically involved in digestion, is released from gills of both fresh and saltwater fishes into surrounding water under stress or injury. We have also shown that each species produces trypsin with different specific activities. In this report, using zebrafish as a model, we identified that trypsin induces an aversive response in zebrafish larvae and adult zebrafish. Since Protease-Activated Receptor 2 (PAR2) responds to trypsin, we tested whether the aversive response is dependent on the activation of PAR2 located on the zebrafish skin cells. Zebrafish larvae treated separately with neomycin and zinc sulfate also showed aversive response indicating neuromast, and olfactory cells are not involved in this aversion. Cultured keratinocytes from zebrafish showed a response to trypsin. Zebrafish larvae subjected to knockdown of par2a also exhibited reduced escape response. Similarly, par2a-deficient mutant larvae displayed no response to trypsin. Since it has been shown that stress activates PAR2 and sends signals to the brain as shown by the increased c-fos expression, we tested c-fos expression in adult zebrafish brains after trypsin treatment of adults and found enhanced c-fos expression by qRT-PCR. Taken together, our results show that the trypsin activates PAR2 on keratinocytes signaling the brain, and this pathway of trypsin-induced escape response will provide a unique communication mechanism in zebrafish. Furthermore, since PAR2 activation also occurs in pain/pruritus sensing, this model might be useful in elucidating components of signaling pathways in pain/pruritus.

2019 ◽  
Vol 20 (22) ◽  
pp. 5795 ◽  
Author(s):  
Sreeja Sarasamma ◽  
Gilbert Audira ◽  
Prabu Samikannu ◽  
Stevhen Juniardi ◽  
Petrus Siregar ◽  
...  

There is an imperative need to develop efficient whole-animal-based testing assays to determine the potential toxicity of engineered nanomaterials. While previous studies have demonstrated toxicity in lung and skin cells after C70 nanoparticles (NPs) exposure, the potential detrimental role of C70 NPs in neurobehavior is largely unaddressed. Here, we evaluated the chronic effects of C70 NPs exposure on behavior and alterations in biochemical responses in adult zebrafish. Two different exposure doses were used for this experiment: low dose (0.5 ppm) and high dose (1.5 ppm). Behavioral tests were performed after two weeks of exposure of C70 NPs. We found decreased locomotion, exploration, mirror biting, social interaction, and shoaling activities, as well as anxiety elevation and circadian rhythm locomotor activity impairment after ~2 weeks in the C70 NP-exposed fish. The results of biochemical assays reveal that following exposure of zebrafish to 1.5 ppm of C70 NPs, the activity of superoxide dismutase (SOD) in the brain and muscle tissues increased significantly. In addition, the concentration of reactive oxygen species (ROS) also increased from 2.95 ± 0.12 U/ug to 8.46 ± 0.25 U/ug and from 0.90 ± 0.03 U/ug to 3.53 ± 0.64 U/ug in the muscle and brain tissues, respectively. Furthermore, an increased level of cortisol was also observed in muscle and brain tissues, ranging from 17.95 ± 0.90 pg/ug to 23.95 ± 0.66 pg/ug and from 3.47 ± 0.13 pg/ug to 4.91 ± 0.51 pg/ug, respectively. Increment of Hif1-α level was also observed in both tissues. The elevation was ranging from 11.65 ± 0.54 pg/ug to 18.45 ± 1.00 pg/ug in the muscle tissue and from 4.26 ± 0.11 pg/ug to 6.86 ± 0.37 pg/ug in the brain tissue. Moreover, the content of DNA damage and inflammatory markers such as ssDNA, TNF-α, and IL-1β were also increased substantially in the brain tissues. Significant changes in several biomarker levels, including catalase and malondialdehyde (MDA), were also observed in the gill tissues. Finally, we used a neurophenomic approach with a particular focus on environmental influences, which can also be easily adapted for other aquatic fish species, to assess the toxicity of metal and carbon-based nanoparticles. In summary, this is the first study to illustrate the adult zebrafish toxicity and the alterations in several neurobehavior parameters after zebrafish exposure to environmentally relevant amounts of C70 NPs.


2021 ◽  
Vol 85 ◽  
pp. 103636
Author(s):  
Teresa Capriello ◽  
Luis M. Félix ◽  
Sandra M. Monteiro ◽  
Dércia Santos ◽  
Rita Cofone ◽  
...  

2022 ◽  
Vol 23 (2) ◽  
pp. 669
Author(s):  
Luiza Marek-Jozefowicz ◽  
Rafał Czajkowski ◽  
Alina Borkowska ◽  
Bogusław Nedoszytko ◽  
Michał A. Żmijewski ◽  
...  

Psoriasis is a chronic inflammatory skin disease with systemic manifestation, in which psychological factors play an important role. The etiology of psoriasis is complex and multifactorial, including genetic background and environmental factors such as emotional or physical stress. Psychological stress may also play a role in exacerbation of psoriasis, by dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis, sympathetic–adrenal–medullary axis, peripheral nervous system, and immune system. Skin cells also express various neuropeptides and hormones in response to stress, including the fully functional analog of the HPA axis. The deterioration of psoriatic lesions is accompanied by increased production of inflammatory mediators, which could contribute to the imbalance of neurotransmitters and the development of symptoms of depression and anxiety. Therefore, deregulation of the crosstalk between endocrine, paracrine, and autocrine stress signaling pathways contributes to clinical manifestations of psoriasis, which requires multidisciplinary approaches.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Shannon N Tessier ◽  
Luciana Da Silveira Cavalcante ◽  
Casie A Pendexter ◽  
Stephanie E Cronin ◽  
Reinier J de Vries ◽  
...  

Cardiac transplantation is the only curative therapy for patients with end-stage heart disease; however, there is a severe shortage of viable donor organs. Heart transplantation faces many interwoven challenges, including both biological factors and research limitations. For example, ischemia-reperfusion injury plays a role in early graft dysfunction and is associated with rejection episodes in heart transplantation. Moreover, experimental transplantation relies heavily on animal studies that are laborious and expensive, prohibiting the discovery of novel, bold solutions. We propose that the zebrafish, Danio rerio , would be a valuable tool for the field since it’s amenable to high-throughput screens, captures the complex structure of organs, and offers a suite of tools to monitor the biology of cardiac injury. Here, we develop a new subzero heart preservation method by strategically leveraging animal models from zebrafish to mammalian hearts. Using zebrafish larvae, we screened for agents which preserve hearts at -10°C. As a result of these screens, we identified promising preservative cocktails which restored heartbeat in 82% of larvae immediately post-recovery. Next, we excised adult zebrafish hearts and developed methods to mimic the ex vivo handling practices of hearts destined for transplant using a heart-on-a-plate assay. Using this assay, we carried forward promising agents identified in our initial zebrafish larvae screen to isolated adult zebrafish hearts that were cooled to -10°C and held for up to 24 hours. After rewarming, heart rate was restored and metabolic rate of zebrafish hearts was like time-matched controls (0.213 ± 0.047 and 0.275 ± 0.060, respectively, p = 0.200). Finally, we report our preliminary scale-up efforts whereby rodent hearts are stored for up to 24 hours at -10°C and viability were assessed by the TUNEL assay. The data shows high viability of cardiomyocytes post-preservation, as compared to controls. In summary, we present data to illustrate our efforts in leveraging the zebrafish to aid new discoveries in subzero heart preservation. Similar efforts to model heart transplantation in zebrafish may provide a different vantage point and enable us to make advances faster.


2020 ◽  
Vol 262 ◽  
pp. 113992 ◽  
Author(s):  
Arash Salahinejad ◽  
Mohammad Naderi ◽  
Anoosha Attaran ◽  
Denis Meuthen ◽  
Som Niyogi ◽  
...  

Author(s):  
Lindsey Johnston ◽  
Rebecca E. Ball ◽  
Seth Acuff ◽  
John Gaudet ◽  
Andrew Sornborger ◽  
...  

2015 ◽  
Vol 4 (2) ◽  
pp. 317-325 ◽  
Author(s):  
Marcos M. Braga ◽  
Emerson S. Silva ◽  
Eduardo P. Rico ◽  
Leticia F. Pettenuzzo ◽  
Diogo L. Oliveira ◽  
...  

DEDTC leads to a buildup of DEDTC in the brain with consequent chelation of reactive Zn and behavioral impairment of zebrafish.


2008 ◽  
Vol 100 (3) ◽  
pp. 1635-1648 ◽  
Author(s):  
Vatsala Thirumalai ◽  
Hollis T. Cline

Dopamine is a key neuromodulator of locomotory circuits, yet the role that dopamine plays during development of these circuits is less well understood. Here, we describe a suppressive effect of dopamine on swim circuits in larval zebrafish. Zebrafish larvae exhibit marked changes in swimming behavior between 3 days postfertilization (dpf) and 5dpf. We found that swim episodes were fewer and of longer durations at 3 than at 5dpf. At 3dpf, application of dopamine as well as bupropion, a dopamine reuptake blocker, abolished spontaneous fictive swim episodes. Blocking D2 receptors increased frequency of occurrence of episodes and activation of adenylyl cyclase, a downstream target inhibited by D2-receptor signaling, blocked the inhibitory effect of dopamine. Dopamine had no effect on motor neuron firing properties, input impedance, resting membrane potential, or the amplitude of spike afterhyperpolarization. Application of dopamine either to the isolated spinal cord or locally within the cord does not decrease episode frequency, whereas dopamine application to the brain silences episodes, suggesting a supraspinal locus of dopaminergic action. Treating larvae with 10 μM MPTP reduced catecholaminergic innervation in the brain and increased episode frequency. These data indicate that dopamine inhibits the initiation of fictive swimming episodes at 3dpf. We found that at 5dpf, exogenously applied dopamine inhibits swim episodes, yet the dopamine reuptake blocker or the D2-receptor antagonist have no effect on episode frequency. These results led us to propose that endogenous dopamine release transiently suppresses swim circuits in developing zebrafish.


2016 ◽  
Vol 134 ◽  
pp. 360-368 ◽  
Author(s):  
Adam C. Roberts ◽  
Kaycey C. Pearce ◽  
Ronny C. Choe ◽  
Joseph B. Alzagatiti ◽  
Anthony K. Yeung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document