scholarly journals Mitochondrial phosphate transporter and methyltransferase genes contribute to Fusarium head blight Type II disease resistance and grain development in wheat

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258726
Author(s):  
Keshav B. Malla ◽  
Ganesh Thapa ◽  
Fiona M. Doohan

Fusarium head blight (FHB) is an economically important disease of wheat that results in yield loss and grain contaminated with fungal mycotoxins that are harmful to human and animal health. Herein we characterised two wheat genes involved in the FHB response in wheat: a wheat mitochondrial phosphate transporter (TaMPT) and a methyltransferase (TaSAM). Wheat has three sub-genomes (A, B, and D) and gene expression studies demonstrated that TaMPT and TaSAM homoeologs were differentially expressed in response to FHB infection and the mycotoxigenic Fusarium virulence factor deoxynivalenol (DON) in FHB resistant wheat cv. CM82036 and susceptible cv. Remus. Virus-induced gene silencing (VIGS) of either TaMPT or TaSAM enhanced the susceptibility of cv. CM82036 to FHB disease, reducing disease spread (Type II disease resistance). VIGS of TaMPT and TaSAM significantly reduced grain number and grain weight. This indicates TaSAM and TaMPT genes also contribute to grain development in wheat and adds to the increasing body of evidence linking FHB resistance genes to grain development. Hence, Fusarium responsive genes TaSAM and TaMPT warrant further study to determine their potential to enhance both disease resistance and grain development in wheat.

2016 ◽  
Vol 9 (5) ◽  
pp. 685-700 ◽  
Author(s):  
M. Vaughan ◽  
D. Backhouse ◽  
E.M. Del Ponte

Fusarium head blight (FHB) of wheat, caused mainly by a few members of the Fusarium graminearum species complex (FGSC), is a major threat to agricultural grain production, food safety, and animal health. The severity of disease epidemics and accumulation of associated trichothecene mycotoxins in wheat kernels is strongly driven by meteorological factors. The potential impacts of change in climate are reviewed from the perspective of the FGSC life cycle and host resistance mechanisms influenced by abiotic pressures at the ecological, physiological and molecular level. Alterations in climate patterns and cropping systems may affect the distribution, composition and load of FGSC inoculum, but quantitative information is lacking regarding the differential responses among FGSC members. In general, the coincidence of wet and warm environment during flowering enhances the risk of FHB epidemics, but the magnitude and direction of the change in FHB and mycotoxin risk will be a consequence of a multitude of effects on key processes affecting inoculum dynamics and host susceptibility. Rates of residue decomposition, inoculum production and dispersal may be significantly altered by changes in crop rotations, atmospheric carbon dioxide concentration ([CO2]), temperature and precipitation patterns, but the impact may be much greater for regions where inoculum is more limited, such as temperate climates. In regions of non-limiting inoculum, climate change effects will likely be greater on the pathogenic rather than on the saprophytic phase. Although the mechanisms by which abiotic stress influences wheat defences against Fusarium species are unknown, available data would suggest that wheat may be more susceptible to Fusarium infection under future climate conditions. Additional research in this area should be a priority so that breeding efforts and climate resilient management strategies can be developed.


Euphytica ◽  
2021 ◽  
Vol 217 (12) ◽  
Author(s):  
M. F. Franco ◽  
G. A. Lori ◽  
G. Cendoya ◽  
M. P. Alonso ◽  
J. S. Panelo ◽  
...  

Author(s):  
Juho Hautsalo ◽  
Satu Latvala ◽  
Outi Manninen ◽  
Minna Haapalainen ◽  
Asko Hannukkala ◽  
...  

Abstract Cultivar resistance is essential for the management of Fusarium head blight (FHB) disease in oat production. However, the breeders lack methods suitable for phenotyping disease resistance and resistance sources. In this paper we compared two oat genotypes, a rejected variety BOR31 and a landrace VIR7766, with four different traits that could reflect resistance to FHB in a greenhouse environment. Spray and point inoculations were used to inoculate Fusarium graminearum into flowering oat plants. When spray-inoculated, VIR7766 was significantly more resistant against the initial infection than BOR31, measured by the number of Fusarium-infected kernels and by DON accumulation. In the point-inoculated oats, the loss of fresh weight in the inoculated spikelet correlated well with the increasing F. graminearum biomass in the spikelet, measured six days after inoculation. However, no difference in the growth of the fungus was observed between the tested oat genotypes by point inoculation. We speculate that once the infection is established, the ability of the oat plant to resist the spread of the infection within a spikelet is low in the genotypes studied, although oat, in general, due to its panicle structure, is considered to have a high resistance against Fusarium infection.


2014 ◽  
Vol 94 (2) ◽  
pp. 371-381 ◽  
Author(s):  
Gary Martens ◽  
Lakhdar Lamari ◽  
Ardelle Grieger ◽  
Robert H. Gulden ◽  
Brent McCallum

Martens, G., Lamari, L., Grieger, A., Gulden, R. H. and McCallum, B. 2014. Comparative yield, disease resistance and response to fungicide for forty-five historic Canadian wheat cultivars. Can. J. Plant Sci. 94: 371–381. Forty-five historic Canadian spring wheat cultivars, ranging from Red Fife (1870) to modern cultivars, were compared for yield and disease resistance in field trials from 2007 to 2010. A split-plot design was used to test yield, leaf rust and Fusarium head blight resistance, with or without a fungicide application. Older cultivars were generally lower yielding and more leaf rust susceptible than modern cultivars; this difference was greatest in 2007 and 2010 under heavier leaf rust. Response to fungicide application was highest in 2007 and 2010. In 2008, leaf rust was very low, and fungicide application had a slightly negative effect on yield overall. Cultivars that have good leaf rust resistance, such as Pasqua, AC Minto, and 5600 HR, had a negligible response to fungicide, whereas older, susceptible cultivars had a larger response. Fusarium head blight levels were too low to compare the cultivars. The highest-yielding cultivars in the untreated plots were AC Domain, 5500HR, AC Cora, Roblin and Barrie, whereas AC Cora, AC Domain, McKenzie, Roblin and AC Intrepid were the highest yielding in the fungicide-treated plots. AC Domain, AC Barrie and Roblin were among the most popular wheat cultivars in Manitoba, in terms of seeded area from the early 1990s to 2009.


2019 ◽  
Vol 109 (4) ◽  
pp. 643-649 ◽  
Author(s):  
Mitra Serajazari ◽  
Kerin Hudson ◽  
Mina Kaviani ◽  
Alireza Navabi

Fusarium head blight (FHB), caused by several Fusarium spp., is a worldwide problem that severely impacts cereal grain yield and poses major risks to human and animal health due to production of the mycotoxin deoxynivalenol (DON) and its acetylated forms, 3-acetyl-DON (3-ADON) and 15-acetyl-DON (15-ADON). Recent studies suggest an inconsistent effect of F. graminearum chemotypes and resistance of wheat (Triticum aestivum) genotypes. To gain insight into the interaction effects of F. graminearum chemotypes and spring wheat genotypes on FHB resistance response, 10 spring wheat genotypes with varying levels of FHB resistance were inoculated with 10 F. graminearum isolates, consisting of 5 3-ADON- and 5 15-ADON-producing isolates and evaluated in type I (spray inoculation) and type II (point inoculation) resistance assays. Wheat genotypes carrying the resistance allele of the Fhb1 quantitative trait locus on chromosome 3BS had lower disease in type II evaluations, regardless of F. graminearum isolate or chemotype. Isolates of F. graminearum were also significantly different for disease aggressiveness. In addition, the 3-ADON-producing isolates were 18% more aggressive than the 15-ADON isolates in type I resistance assays. No difference in aggressiveness of the two chemotypes was observed, when tested in type II resistance assays. There was no interaction effect between F. graminearum chemotypes and spring wheat genotypes, suggesting that screening of germplasm for resistance can be performed with limited number of aggressive isolates.


2006 ◽  
Vol 19 (2) ◽  
pp. 123-129 ◽  
Author(s):  
Ragiba Makandar ◽  
Juliane S. Essig ◽  
Melissa A. Schapaugh ◽  
Harold N. Trick ◽  
Jyoti Shah

Fusarium head blight (FHB) is a devastating disease of wheat and barley which causes extensive losses worldwide. Monogenic, gene-for-gene resistance to FHB has not been reported. The best source of resistance to FHB is a complex, quantitative trait derived from the wheat cv. Sumai 3. Here, we show that the Arabidopsis thaliana NPR1 gene (AtNPR1), which regulates the activation of systemic acquired resistance, when expressed in the FHB-susceptible wheat cv. Bobwhite, confers a heritable, type II resistance to FHB caused by Fusarium graminearum. The heightened FHB resistance in the transgenic AtNPR1-expressing wheat is associated with the faster activation of defense response when challenged by the fungus. PR1 expression is induced rapidly to a high level in the fungus-challenged spikes of the AtNPR1-expressing wheat. Furthermore, benzothiadiazole, a functional analog of salicylic acid, induced PR1 expression faster and to a higher level in the AtNPR1-expressing wheat than in the nontransgenic plants. We suggest that FHB resistance in the AtNPR1-expressing wheat is a result of these plants being more responsive to an endogenous activator of plant defense. Our results demonstrate that NPR1 is an effective candidate for controlling FHB.


Sign in / Sign up

Export Citation Format

Share Document